Marching Neurons:

Accurate Surface Extraction for Neural Implicit Shapes

CHRISTIAN STIPPEL, TU Wien, Austria

FELIX MUJKANOVIC, Max-Planck-Institute for Informatics, Germany
THOMAS LEIMKUHLER, Max-Planck-Institute for Informatics, Germany

PEDRO HERMOSILLA, TU Wien, Austria

Fig. 1. Surfaces extracted from a signed distance function (SDF) represented by a neural network using Marching Cubes with different grid resolutions (left
and center) compared to our analytic method (right). While Marching Cubes struggles to reconstruct sharp edges even at high grid resolutions, our analytic

method is able to reconstruct the surface accurately.

Accurate surface geometry representation is crucial in 3D visual computing.
Explicit representations, such as polygonal meshes, and implicit representa-
tions, like signed distance functions, each have distinct advantages, making
efficient conversions between them increasingly important. Conventional
surface extraction methods for implicit representations, such as the widely
used Marching Cubes algorithm, rely on spatial decomposition and sampling,
leading to inaccuracies due to fixed and limited resolution. We introduce
a novel approach for analytically extracting surfaces from neural implicit
functions. Our method operates natively in parallel and can navigate large
neural architectures. By leveraging the fact that each neuron partitions the
domain, we develop a depth-first traversal strategy to efficiently track the
encoded surface. The resulting meshes faithfully capture the full geometric
information from the network without ad-hoc spatial discretization, achiev-
ing unprecedented accuracy across diverse shapes and network architectures
while maintaining competitive speed.

ACM Reference Format:

Christian Stippel, Felix Mujkanovic, Thomas Leimkiihler, and Pedro Her-
mosilla. 2025. Marching Neurons: Accurate Surface Extraction for Neural
Implicit Shapes. ACM Trans. Graph. 44, 6, Article 222 (December 2025),
12 pages. https://doi.org/10.1145/3763328

Authors’ Contact Information: Christian Stippel, TU Wien, Austria; Felix Mujkanovic,
Max-Planck-Institute for Informatics, Germany; Thomas Leimkiihler, Max-Planck-
Institute for Informatics, Germany; Pedro Hermosilla, TU Wien, Austria.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7368/2025/12-ART222

https://doi.org/10.1145/3763328

1 Introduction

Accurately representing surface geometry is a cornerstone of 3D
visual computing and beyond [De Berg 2000; Watt 1999]. A contin-
ually growing repertoire of representations exists, broadly divided
into two categories: Explicit representations, which directly describe
the surface using geometric elements such as polygons or points;
and implicit representations, which define the surface indirectly
as the set of points satisfying a mathematical equation, such as
level sets, with signed distance functions (SDFs) being a prominent
example. The choice of representation is typically guided by the
downstream algorithms and applications that use the geometry. For
example, explicit representations are well-suited for classical tasks
such as rendering [Akenine-Moller et al. 2019] and editing [Botsch
et al. 2010], while implicit representations excel in gradient-based
geometry optimization, a core operation in modern neural work-
flows [Park et al. 2019; Wang et al. 2021]. In this work, we propose
a novel, accurate, and flexible technique for analytically converting
a neural implicit shape into an explicit surface.

The vast majority of existing techniques for surface extraction
from implicit representations rely on spatial decomposition and
sampling [De Araujo et al. 2015]. The most commonly used method
in this domain is Marching Cubes [Lorensen and Cline 1987], which
samples the implicit function on a regular grid and uses linear in-
terpolation to approximate the desired level set. While popular
for its simplicity and agnostic to the implicit function represen-
tation, this method’s accuracy is limited by the chosen sampling
resolution and interpolation scheme. Many follow-up works have
further developed the basic approach [Newman and Yi 2006], e.g.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

HTTPS://ORCID.ORG/0000-0003-0482-902X
HTTPS://ORCID.ORG/0009-0009-9122-4408
HTTPS://ORCID.ORG/0009-0006-7784-7957
HTTPS://ORCID.ORG/0000-0003-3586-4741
https://doi.org/10.1145/3763328
https://orcid.org/0000-0003-0482-902X
https://orcid.org/0009-0009-9122-4408
https://orcid.org/0009-0006-7784-7957
https://orcid.org/0000-0003-3586-4741
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3763328

222:2 « Christian Stippel, Felix Mujkanovic, Thomas Leimkiihler, and Pedro Hermosilla

by pruning samples using hierarchical structures [Wilhelms and
Van Gelder 1992], moving to tetrahedral meshes to enable irregu-
lar sample placement [Doi and Koide 1991], optimizing the sample
locations [Shen et al. 2023], or employing more advanced interpo-
lation strategies [Ju et al. 2002; Sellan et al. 2024]. Yet, for all of
these approaches, a fundamental problem remains: Reconstructing
complex geometry from a finite set of samples inevitably introduces
inaccuracies.

The surge of deep learning [Goodfellow et al. 2016] over the
past decade has advanced not only signal processing but also signal
representation. In particular, neural fields [Sitzmann et al. 2019;
Xie et al. 2022], which use coordinate-based networks for signal
representation, have become a powerful and ubiquitous paradigm
for continuous functions, such as surface implicits [Park et al. 2019].
The key insight of this work is that these neural representations
enable efficient analytic surface extraction without the need for ad-
hoc sampling.

We propose a novel method for extracting a surface from an im-
plicit function represented by a neural network. We leverage the
fact that a (deep) composition of piecewise linear functions remains
piecewise linear, with each layer subdividing existing regions [Mont-
ufar et al. 2014] and shaping the target function through convex
linear regions separated by hyperplanes. This enables us to traverse
the deep network neuron by neuron (“marching”) in a depth-first
fashion, identifying progressively finer regions that contain the
desired surface. Although the number of linear regions increases
exponentially with network depth [Montufar et al. 2014], most do
not contain the surface. Using range analysis [Sharp and Jacobson
2022] to eliminate empty regions, our approach efficiently traverses
ReLU-based neural architectures. This process produces a polygonal
mesh that accurately captures the encoded surface geometry.

Unlike previous work on analytic surface extraction [Berzins 2023;
Lei and Jia 2020; Lei et al. 2021], our approach is not only adaptively
accurate — extracting surfaces at the level of the underlying neural
field - but also capable of extracting multiple disconnected shapes
while maintaining competitive reconstruction speed.

In summary, our contributions are:

o A novel method for analytically extracting a polygonal mesh
from an implicit neural representation.

e An algorithm that is natively parallel and easy to implement.

o Capabilities and accuracy that significantly exceed the current
state of the art.

We provide all source code and datasets in our project page.

2 Related Work
2.1 The Geometry of Neural Networks

Deep neural networks are universal function approximators in the-
ory [Hornik et al. 1989] and demonstrate the ability to represent
complex functions across diverse domains in practice [Goodfellow
et al. 2016]. This remarkable flexibility arises from their composi-
tional structure, which enables exponential expressivity with respect
to the number of layers [Montufar et al. 2014], allowing virtually
any data topology to be handled [Naitzat et al. 2020]. Networks with
ReLU activation functions are particularly well-suited for analyzing
this property [Hanin and Rolnick 2019; Pascanu et al. 2014; Raghu

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

et al. 2017], as they model continuous piecewise linear functions.
These networks partition the input domain into polyhedral regions,
formed by an arrangement of folded hyperplanes that correspond
to the decision boundaries of neurons [Grigsby and Lindsey 2022;
Vallin et al. 2023]. We propose a novel algorithm for tracing the
geometry of a neural network to extract an explicit representation
from the implicit function it encodes.

Algorithms for analytically extracting the polyhedral complex
of a ReLU network typically rely on mixed-integer linear program-
ming [Serra et al. 2018], neuron state flipping [Lei and Jia 2020;
Lei et al. 2021], or recursive intersection and cutting [Humayun
et al. 2023; Wang 2022], with applications in, e.g. , safety verifi-
cation [Vincent and Schwager 2021] and robustness [Hein et al.
2019]. However, the computational complexity of these approaches
is typically substantial due to the combinatorial explosion in the
number of polyhedra. Addressing this problem, Berzins [2023] pro-
poses increasing efficiency by eliminating redundancy through an
edge-centric approach. Our key insight is that, for the critical task of
surface extraction from neural implicit representations, a massively
parallel implementation can be achieved by a bespoke depth-first
traversal of the network. This approach results in accuracy that
surpasses the state of the art, while maintaining competitive speed.

2.2 Iso-Surface Extraction

The representation of surfaces as level sets of implicit functions has
arich history across various scientific disciplines and decades [Bloo-
menthal et al. 1997; Osher et al. 2004]. Extracting an explicit (typi-
cally polygonal) surface from this representation is a well-studied
problem for which several classes of algorithms have been devel-
oped [De Araujo et al. 2015].

While surface tracking [Hilton et al. 1996] and shrink-wrapping
approaches [Hanocka et al. 2020; Stander and Hart 1997; Van Overveld
and Wyvill 2004] have been applied with some success, the major-
ity of research focuses on spatial decomposition techniques [Bloo-
menthal 1988]. Here, space is divided into cells, and polygons are
constructed within each cell containing the surface, typically by
interpolating discrete samples. The popular Marching Cubes algo-
rithm [Lorensen and Cline 1987; Wyvill et al. 1986] and numerous
follow-up works [Chernyaev 1995; Hege et al. 1997; Montani et al.
1994; Newman and Yi 2006; Wilhelms and Van Gelder 1992] use a
regular grid of cubes. The rigidity of this structure has been relaxed
to allow for more adaptive discretizations, e.g. by using tetrahe-
dra [Doi and Koide 1991; Ren et al. 2025]. Unlike the sampling-based
techniques, our method determines the geometry analytically.

Dual representations have been shown to outperform traditional
approaches by offering more flexible and accurate surface recon-
struction, especially in handling sharp features and complex topolo-
gies [Azernikov and Fischer 2005; Ju et al. 2002; Nielson 2004].
Furthermore, replacing hand-crafted extraction rules with learned
ones [Chen et al. 2022; Chen and Zhang 2021] or adopting more
sophisticated interpolation schemes [Kohlbrenner and Alexa 2025;
Sellan et al. 2023; Sellan et al. 2024] can lead to significant qual-
ity improvements. By using an analytical approach, our algorithm
eliminates the need for any sampling and interpolation schemes.

https://phermosilla.github.io/neurons/

With the proliferation of neural fields [Sitzmann et al. 2019; Xie
et al. 2022], surface-encoding implicit functions are now commonly
represented using neural networks [Park et al. 2019]. Due to their
closed-form nature, analytic surface extraction is feasible; however,
the complexity of the underlying geometry presents significant
challenges. Analytic Marching [Lei and Jia 2020; Lei et al. 2021]
addresses this problem by explicitly enumerating the polyhedral
cells that contain the surface, recursively visiting neighboring cells.
However, this approach faces challenges with multiple disconnected
components. Berzins [2023] addresses this problem by relying on an
edge-centric approach instead of linear regions. However, Berzins
struggles with complex architectures due to the lack of a filtering
mechanism for empty regions, producing at the same time an exces-
sive number of polygons. In contrast, we propose a method capable
of extracting shapes that can consist of multiple components while
maintaining competitive speed.

3 Background

In this section, we introduce the concepts and notation for neural
implicit shape representations relevant to our approach.

We focus on solid shapes S represented as the level set, or iso
surface, of an implicit function f € Q@ — R [Bloomenthal et al.
1997], with Q@ c R3. Without loss of generality, we consider the
zero level set (Fig. 2):

S={xe Q] f(x)=0}. 1

This general setting encompasses sev-

eral widely used special cases, includ-

ing signed distance fields (SDFs) [Os- r

her et al. 2004; Park et al. 2019], un-

signed distance fields [Chibane et al.

2020], and their variations, such as

truncated [Curless and Levoy 1996],

distorted [Seyb et al. 2019], or other- k

wise weaker forms [Marschner et al.

2023; Sharp and Jacobson 2022].
Nowadays, a widely adopted ap-

proach to representing f is through

a neural field fp, i.e. a neural architec-

ture with trainable parameters 6, optimized via gradient descent [Xie

etal. 2022]. In the simplest case, fp is represented by a Multilayer Per-

ceptron (MLP). The number of neurons in each layer/ € {1,...,L} is

denoted as d;. Given a weight matrix W) e RI%di-1 4 bias vector

b € R%, and a non-linear activation function ¢) € R — R for

each layer, the network recursively applies

q? = o (p<l>), @)

where o is applied element-wise. We set q¢*) := x and fp(x) := p)
and refer to pi(l) and qi(l) as the i-th pre-activation neuron and post-
activation neuron, respectively.

While there is an overwhelming variety of nonlinear activation
functions available [Kunc and Kléma 2024], we consider the special
case of piecewise linear! activation functions for now. Given the

recursive structure of Eq. 2, fp is a composition of piecewise linear

O>0 0O<0 B=0

Fig. 2. An implicit func-
tion and its zero level set.

p = WD gD 40,

!For simplicity, we use “linear” for both linear and affine functions.

Marching Neurons « 222:3

functions and is therefore itself piecewise linear. Each call of o
potentially subdivides the domain of f into an increasingly larger
number of convex linear regions, separated by planes [Hanin and
Rolnick 2019; Montufar et al. 2014], with each region referred to as
a cell. Fig. 3 illustrates this property in 2D using arguably the most
common choice in this space: the rectified linear unit (ReLU):

a(p) = max(0,p). ®)

In this context, we refer to a post-activation neuron qu) as active if
it is positive and inactive if it is zero. The cells of fy are separated by
the set of planes {x eR3| pgl) (x) = 0} , which correspond to the
locations where a neuron switches from inactive to active. Within
each cell, the active/inactive pattern of neurons in the entire network
remains fixed, implying that fj is linear within each cell and can be
represented by collapsing the corresponding submatrices of W ()
and subvectors of b(") across layers. Similar observations hold for
any choice of o that is piecewise linear.

4 Method

Given an implicit neural representation fy with ReLU activation
functions, we aim to extract its zero level set S as a polygonal
mesh. Importantly, our goal is an analytic extraction that captures
all the details encoded in fp, unlike the widely used sampling-based
methods [Lorensen and Cline 1987].

For piecewise-linear activation functions, fp can be viewed as
a collection of linear branches [Lei and Jia 2020; Lei et al. 2021].
Our key insight is that by adaptively subdividing the domain and
tracking activation patterns, we can efficiently reduce the network
to an explicit piecewise-linear function in each cell, represented
as a polyhedral mesh. Using range analysis [Sharp and Jacobson
2022], we can discard many cells early on, as they do not contain
the zero level set, leading to significant efficiency gains. As a result,
we obtain an accurate solution for the zero iso-surface in the form
of a polygonal mesh.

In Sec. 4.1, we introduce the basic structure of our approach using
a 2D domain, before extending the method to the 3D setting in
Sec. 4.2. Finally, we provide implementation details in Sec. 4.3.

4.1 Level Set Extraction for 2D Networks

For Q C R2, each neuron can define a polyline that partitions Q
into two regions, resulting in a collection of convex polygonal cells
(Fig. 3). We propose a novel scheme that explicitly tracks these cells
by a depth-first traversal of fy. As we traverse fp, the cells, with layer-
specific geometries and internal states, undergo transformations
and splitting, and may also be discarded. The goal of this process is
to identify the set of cells containing the zero level set of fj, enabling
its explicit representation as one or more closed line strips to be
extracted.
Each polygonal cell at layer [is represented as the tuple

ch = {v; W,B}, @

where V = [V1, V2,...,Vim] € R2X™ specifies the 2D coordinates of
the m vertices v; € R? forming the polygon. Further, W € R%*?

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

222:4 .« Christian Stippel, Felix Mujkanovic, Thomas Leimkiihler, and Pedro Hermosilla

p» qW

2

2

[7] Linear Cell

(g p@ g2
PR)

p®

9

|

[J zero Cell

@ ReLU

Fig. 3. The geometry of ReLU MLPs, illustrated here for a 2D input domain with two hidden layers containing two neurons each. In each layer [, the
pre-activations p(!) are computed as linear combinations of the neurons from the previous layer. The ReLU activation then produces post-activations q(*),
introducing lines that subdivide the existing linear regions. As a result, the network’s output is composed of convex cells within which it remains linear, i.e. we

can collapse all corresponding weight matrices and biases.

Fig. 4. The three steps of our network traversal. First, we bound the network
response within each cell (purple volume) to eliminate those that do not
intersect the zero level set. Next, we split the remaining cell to capture the
nonlinearities introduced by piecewise linear activation functions. Finally,
the current layer (green neurons) is combined with the next layer. The entire
process (1. - 3.) repeats until the final network layer is reached.

and b € RY are the parameters defining the linear function
P(x) =Wx+b ()

inside the polygon by combining the linear functions contributing
up to this layer, corresponding to the pre-activation response of the
current layer. For any hidden layer [, p(x) produces a d;-dimensional
vector, where each component corresponds to a neuron (rows in
Fig. 3). In the final layer L, p(x) outputs a scalar (d = 1) that
represents the linear function describing the full fp within the cell.

Without loss of generality, we assume a rectangular domain Q

and initialize the cell set with a single quadrilateral, { Cl(o) } covering

the entire domain. The corresponding function p(x) is initialized as
the identity function, with W = Iy, and b=o.

From this point, we traverse the layers of fp, iteratively updating
the cell set until only the final-layer cells containing the zero level
set remain. Progressing through layers, we prune or split cells while
updating their parameters, as detailed below and shown in Fig. 4.

4.1.1 Step 1: Cell Pruning. As a first step, we eliminate cells that
do not intersect the zero level set of fy. Since the number of lin-
ear regions within the domain Q grows exponentially with each

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

layer [Montufar et al. 2014], and most do not contain the zero level
set, this step is crucial for maintaining efficiency. We use range
analysis [Duff 1992; Rump and Kashiwagi 2015] on the remaining
layers to accomplish this task. Specifically, we follow Sharp and
Jacobson [2022] and compute affine bounds [Comba and Stolfi 1993]
of fp within each cell Ci(l). This gives us a conservative estimate of

the minimum and maximum values of fy within Ci(l). If

max fy(x) <0, 6)
xEC(l)

i

min fp(x) >0 or
xect!

we discard Ci(l) because it does not intersect the zero level set. In
practice, we query the affine bounds using the cell’s axis-aligned
bounding box. This may overestimate ranges for degenerated cells,
for example, ones that have a long, not axis-aligned diagonal; how-
ever, it suffices to ensure scalability to larger networks.

4.1.2 Step 2: Cell Splitting. In this step, we first identify neurons
in the current layer [that divide the polygon Ci(l) into two smaller
linear regions. We refer to these neurons as critical and observe
that their pre-activation responses p(x) change sign within the
polygon, leading to the non-linear kink of the subsequent ReLU
activation occurring inside the polygon. Since we are dealing with
linear functions, the vertices v; naturally correspond to the locations
of the extrema of p(x) within the polygon. Therefore, to check for
criticality, it suffices to evaluate p at the vertices. Specifically, neuron
i is considered critical if

min (5(vj))i <0 and max (ﬁ(vj))i > 0. (7)
j j

If one or more critical neurons are associated with the polygon, it
is split along the (linear) zero level set of the corresponding output
dimensions of p(x) with the Sutherland-Hodgman [1974] algorithm.
New vertices are inserted on the intersection of polygon edges with
the cutting plane, obtaining two sub-polygons separated by the neu-
ron. Polygons that do not need to be split are retained unchanged.

4.1.3 Step 3: Layer Collapsing. As we move to the next layer [+ 1,
it is necessary to update W and b. Recall that only neurons active

within a cell contribute their linear functions to it. To track this, we
define a binary mask m € R%, where each entry indicates whether
the corresponding neuron in the current layer [is active within the
cell. Using this mask, we update the function parameters of the cell

as follows: _ _
W = WD diag(m) W

b = w0 (moB) + b, ®

where diag(-) converts a vector into its diagonal matrix representa-
tion, and © denotes the Hadamard product. The updated cells form

the new set {Ci(lﬂ)}, which will be processed by step 1 again.

4.1.4 Network Traversal. The three steps outlined above specify
how cells should be updated when transitioning from one layer
to the next, providing flexibility in choosing the global traversal
scheme. A straightforward approach processes all cells in a layer
before moving to the next, corresponding to a breadth-first traversal.
However, this approach has the disadvantage of requiring more
memory than is typically available on a contemporary GPU. In
the worst case, every neuron splits all active cells. A breadth-first
traversal must then hold the full frontier of all cells at once, resulting
in space requirements of O(2%), where d is the number of neurons.
Therefore, we choose a depth-first traversal where we process cells
in a last-in-first-out principle to reduce the memory burden. To fully
utilize the GPU, we schedule the traversal to maintain a sufficient
number of cells processed in parallel in each step. In this case, we
only store the current branches of the subdivision tree, resulting in
O(bd), where b is the number of cells processed in parallel.

In practice, the average space complexity is lower: not every
neuron splits every cell, and the likelihood of a split decreases the
more often a cell has already been subdivided. Additionally, range-
analysis pruning removes many cells before they would be split.

4.1.5 Level Set Extraction. Once all cells have reached the final
layer, the set Ci(L) contains the cells that cover the piecewise

linear regions of the level set of fy. At this point, the linear level
set S = {x | p(x) = 0} can be analytically extracted from each cell.
This is straightforward as p is a linear function. The union of the
extracted per-cell level sets forms the desired explicit representation
as a line strip.

4.2 Extension to 3D

Extending our approach to 3D, where x € Q C R3, is straightfor-
ward: operations on polygons are adapted to handle 3D polyhedra.
Specifically, we now maintain m 3D vertices, V € R**™ and the
per-cell function parameter W € R9*3 accounts for the additional
dimension. Critical neurons now split polyhedra along planes. Once
the final layer L of fy is reached, we analytically extract the zero
level set from each polyhedron, producing the polygonal mesh that
explicitly represents the encoded surface S. The mesh is then tes-
sellated into triangles for compatibility with standard pipelines.

4.3 Implementation Details

We realized our approach using a reasonably optimized JAX [Brad-
bury et al. 2018] implementation that takes advantage of our na-
tively parallel algorithm design. All active cells reside in a shared

Marching Neurons « 222:5

buffer with indexing stacks for each operation. To prevent numerical
inaccuracies that can occasionally arise from our deep recursive
subdivision scheme, we found a mixed-precision implementation to
be essential. Specifically, while cell pruning can be safely executed
with 32-bit floating-point precision, we use 64-bit precision for cell
splitting and layer collapsing. However, this does not impose any
restrictions on the bit depth of the input network fjp.

5 Evaluation

In this section, we describe the experiments conducted to evaluate
our method. We compare the quality of the meshes extracted by our
algorithm with those reconstructed by other methods. Moreover, we
also measure the time required for the reconstruction of the resulting
meshes and the average number of triangles generated. Additionally,
we also evaluate the quality of the meshes generated and the effect
of mesh simplification algorithms on the reconstruction. Lastly, we
evaluate the effect of our filtering step and extend our approach to
arbitrary activation functions. We assume that all shapes are defined
by the zero-level set of an SDF encoded by a neural network.

5.1 Experimental Setup

Metrics. To measure the error introduced by the reconstruction
algorithms, we compare the extracted mesh directly to the SDF en-
coded within the neural network. We define two metrics to measure
such error: Soft-Precision (SP) and Soft-Recall (SR). Soft-Precision
aims to quantify how far the reconstructed mesh is from the zero-
level set defined by the SDF. This metric is computed by sampling
2% points on the surface of the reconstructed mesh, evaluating the
SDF at these point locations, and taking the mean absolute value.
If the reconstructed surface lies in the zero-level set of the SDF,
Soft-Precision will be exactly zero.

However, Soft-Precision does not capture cases in which large
portions of the zero-level set are not reconstructed. To remedy this,
we introduce a second metric, Soft-Recall. First, we sample 22° points
on the surface of the original mesh from our dataset. Then, we use
gradient descent to move such points to the zero-level set of the SDF.
Once converged, we measure the average distance of the resulting
coordinates to the reconstructed mesh. If the method is able to
perfectly reconstruct the complete zero-level set, Soft-Recall will be
exactly zero.

Additionally, we compare the time required to perform the ex-
traction and the number of resulting triangles.

Datasets. We evaluate our method and all other baselines on 84
watertight shapes collected from five different datasets: 20 shapes
from THINGI10K [Zhou and Jacobson 2016], 20 shapes from the ABC
DaTASET [Koch et al. 2019], 19 shapes from SHAPENET [Chang et al.
2015], 20 shapes from FAUST [Bogo et al. 2014], and 5 shapes from
the STANFORD 3D SCANNING REPOSITORY [Curless and Levoy 1996].
Fig. 5 depicts some samples from our dataset. Then, for each shape,
we fit neural SDFs with all architectures.

SDF Training Protocol. Before training, meshes are converted into
an SDF. Each mesh’s bounding box is normalized to the range
[-.95,.95]3, and then densely sampled to produce 107 training points
per shape. For non-ShapeNet meshes, 2%° samples (~ 6% of the total)

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

222:6 « Christian Stippel, Felix Mujkanovic, Thomas Leimkiihler, and Pedro Hermosilla

Table 1. Mesh extraction. Soft Precision (SP) and Soft Recall (SR) are multiplied by 10°, triangles divided by 10°. Runtime is measured in seconds.

da w128 d4 w256
SP SR Runtime Triangles Sp SR Runtime Triangles
Approx. - 64°
*Marching Cubes 1682.28 10293.05 0.01 14.44 1802.69 9832.66 0.01 14.21
*Dual Contouring 1278.87 10044.56 0.20 14.45 1412.82 9530.62 0.20 14.23
Hier. Marching Cubes 1686.56 10352.45 4.77 14.42 1814.43 9982.32 5.72 14.18
*Reach for the Arcs 4072.33 3144.99 538.65 355.01 3480.32 2851.51 481.15 349.09
Approx. - 128
*Marching Cubes 518.48 1373.29 0.04 62.18 551.65 1248.17 0.08 60.89
*Dual Contouring 425.45 1319.47 1.17 62.13 461.12 1207.23 1.22 60.90
Hier. Marching Cubes 543.82 1420.48 8.83 62.11 561.32 1269.78 11.69 60.76
*Reach for the Arcs 6302.02 2810.83 5726.60 310.95 4826.59 2406.64 4696.52 337.86
Approx. - 256°
*Marching Cubes 162.36 356.69 0.30 258.50 175.50 330.28 0.62 252.57
*Dual Contouring 126.58 327.90 6.92 258.38 134.16 301.52 7.07 252.47
Hier. Marching Cubes 221.47 436.62 11.35 259.51 196.49 363.15 16.81 252.52
*Reach for the Arcs - - - - - - - -
Approx. - 512°
«Marching Cubes 53.61 113.88 2.36 1048.80 60.33 101.94 4.91 1025.29
*Dual Contouring 41.75 101.98 48.56 1048.69 45.24 88.62 50.33 1025.15
Hier. Marching Cubes 150.22 235.37 15.05 1060.95 103.01 153.12 21.54 1028.08
*Reach for the Arcs - - - - - - - -
Exact
Analytic Marching 0.03 675.76 3.21 425.92 0.02 188.80 32.99 2306.06
*Edge Subdivision 0.03 0.61 46.72 429.08 0.02 0.90 21147.39 2321.70
*Qurs 0.03 0.07 11.84 429.08 0.02 0.03 169.40 2321.70

Fig. 5. Visualization of samples from our dataset. Our dataset covers a large
range of mesh complexities, from simple CAD objects composed of a few
thousand triangles to highly detailed shapes with millions of triangles.

are drawn uniformly from the bounding box using a Sobol sequence,
while the remaining points (= 94%) are concentrated near the sur-
face. These are split equally into on-surface points and near-surface
points (each ~ 47% of the total). The near-surface samples are cre-
ated by adding Gaussian noise with ¢ = 0.05 to surface points.
Signed distances are computed for the uniform and near-surface
samples using Open3D’s raycasting [Zhou et al. 2018] with 9 eval-
uation rays per query, while the on-surface samples are assigned
distance zero. For ShapeNet meshes, which are often non-watertight,
DeepSDF’s dedicated preprocessing tool [Park et al. 2019] is used to
generate the same total number of samples distributed across inside

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

and outside regions. Networks are trained with the Adam [Kingma
and Ba 2015] optimizer at a fixed learning rate of 10~ and a batch
size of 10*. Batches are sampled with replacement from the full
dataset. Training runs for four hours.

Baselines. We compare our method to several baselines that ap-
proximate the mesh surface by spatial decomposition and sampling
of the SDF, and other exact methods like ours. In particular, we select
Marching Cubes [Lorensen and Cline 1987], Dual Contouring [Ju
et al. 2002], Hierarchical Marching Cubes [Sharp and Jacobson 2022],
and Reach for the Arcs [Sellan et al. 2024] as representative base-
lines for approximation methods. For such methods, we use a grid
resolution of 64, 128, 256 and 512. Moreover, we compare to two
existing exact methods: Analytic Marching [Lei et al. 2021] and Edge
Subdivision [Berzins 2023].

Neural Architectures. We chose a neural architecture commonly
used to encode SDFs: a ReLU multi-layer perceptron (MLP). In par-
ticular, we selected two variants: a ReLU MLP with four layers and
128 neurons each (d4_w128), and a more complex architecture also
composed of four layers but with 256 neurons each (d4_w256).

5.2 Main Results

Tab. 1 presents the main result of our comparison. Naturally, all
approximation methods produce meshes with high SP and SR when

Marching Neurons « 222:7

d4 w128 d4_w256
Sp SR Runtime SP SR Runtime
S T T
1072 4 % : ° L % : @ L 104
1078 5 1 8 E % ° 1 88 %
o 2] 3
10 4 ' 3 | 3 o FI0°
& \ | ° f I é £
= 107 4 E
& ! o % 3 ! R E 102 2
10-6 1 o & 1 &
, ! g & ! F 1
1077 4 \ é 3 \ Q ; . L 10
107 4 f ! & % % :
| L 1 F 100
[Marching Cubes [Dual Contouring Hier. Marching Cubes ~ [__1 Reach for the Arcs Analytic Marching 1 Edge Subdivision =~ 1 Ours

Fig. 6. Box plots for soft precision (SP), soft recall (SR), and runtime per architecture and method. Little triangles indicate the means. Runtime is measured in
seconds. Most approximation methods use a grid of resolution 512, while Reach for the Arcs uses 128.

Neurons
32 64 128 256 512

Layers
3 4 5 6 7 8
L L L L L L
10t] /&/_x—/‘x
103 -
g
£]
El X
=
e W
wi =~
101 4

e

N —

~>— Marching Cubes —>— Dual Contouring Hier. Marching Cubes

—>¢— Reach for the Arcs

Analytic Marching —>— Edge Subdivision —>— Ours

Fig. 7. Scalability study with runtime measured in seconds. We vary the depth and width of the d4_w128 architecture and extract meshes with every method.

low-resolution sampling grids are used. Employing higher-resolution
grids decreases these metrics, but leads to an increase in processing
time and generated triangles. Yet, even for the finest grids with
resolution 512, the reconstructed meshes significantly deviate from
the SDF. Moreover, the recent method Reach for the Arcs [Sellan
et al. 2024] is only able to process low-resolution grids due to its
long processing times.

Analytic methods, on the other hand, produce meshes with almost
perfect SP. Regarding SR, however, Analytic Marching [Lei et al.
2021] exhibits high metrics as it misses disconnected parts of the
mesh. This is the result of the nature of their algorithm, which relies
on a set of seed points from which the mesh is reconstructed itera-
tively. In contrast, this is not the case for Edge Subdivision [Berzins
2023], which produces meshes with low SR. Unfortunately, it takes
a long time to reconstruct large networks. When we look at the
distribution of these metrics over the different shapes in our dataset
in Fig. 6, analytic methods present high variability in SR, indicating
that they struggle with certain shapes. Our method, on the other
hand, produces more accurate meshes with fewer triangles than
other analytic methods, while maintaining a reasonable runtime
comparable to approximation methods.

Fig. 8 provides qualitative results of several meshes reconstructed
by all baselines. These show that our method is able to produce
more accurate results than approximation methods, which struggle
to reconstruct sharp edges, and than Analytic Marching [Lei and Jia

2020; Lei et al. 2021], which fails to reconstruct certain disconnected
components. Additionally, Fig. 8 also shows that reconstructions pro-
duced by Edge Subdivision [Berzins 2023] result in denser meshes
with more triangles.

5.3 Scalability

We also evaluate how the runtime of each method scales for net-
work architectures with increasing numbers of layers and neurons
in Fig. 7. For most approximation methods, the runtime slightly
increases with both the depth and width of the network, since in-
ference becomes more costly. For Reach for the Arcs [Sellan et al.
2024], this effect is drowned by the method’s generally long run-
time. As expected, analytic methods exhibit a steeper increase in
runtime as we increase the network size. Among them, Edge Sub-
division [Berzins 2023] is particularly sensitive to the number of
neurons, and fails to process a network with width 512. On the other
hand, both Analytic Marching [Lei and Jia 2020; Lei et al. 2021] and
our method scale more gracefully with the number of neurons, while
ours unfortunately scales worse with the number of layers. Still,
these results show that our method is able to process a large range
of network architectures in a reasonable runtime similar to Analytic
Marching [Lei and Jia 2020; Lei et al. 2021] while being substantially
more accurate.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

222:8 « Christian Stippel, Felix Mujkanovic, Thomas Leimkiihler, and Pedro Hermosilla

Fig. 8. Qualitative results of all the baselines for two network architectures with different numbers of neurons.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

Marching Neurons « 222:9

Fig. 9. Evaluation of the quality of the triangle meshes generated by different reconstruction methods using the d4_w256 architecture.

Percentage of triangles

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
,
10 4
101 .
% 100 4
10 -1 4
E 0.6 7 M
o
-
w
2
e 0.5
=
=
=}
o
=04

== Ours (QEM) Marching Cubes

=== Dual Contouring

Percentage of triangles
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SR

Edge Ratio
L
L

s

Hier. Marching Cubes

Fig. 10. Soft precision (SP), soft recall (SR), and triangle quality metrics of our meshes after reducing the number of triangles using Quadric Error Metrics
(QEM). Additionally, for reference, we include results from several approximation methods without any post-processing. Note that Marching Cubes and Hier.

Marching Cubes overlap on some of the triangle quality metrics.

5.4 Triangle Mesh Quality

All analytic extractors output polygonal faces that we tessellate
to triangles for downstream use. In the following experiments, we
evaluate the quality of the triangle meshes generated by analytic
methods with different tessellation approaches compared to approx-
imation methods. We report standard triangle-quality metrics.

Tessellation. Several strategies were considered for tessellating
the k-gon faces produced by the analytic extractor. The fan, method
connects every triangle to the first vertex iy, yielding the triangle set
{(io, ij,ij+1)|1 £ j < k — 2}. However, it often generates long trian-
gles. Centroid introduces the vertex ¢ = § Zﬁ?:l v;; as an additional
vertex. Triangles {(c, ij,1j4+1)|0 < j < k — 2} are emitted cyclically,
producing a uniform hub structure, though additional triangles are
needed. Lastly, strip generates a triangle strip from the polygon, i.e.
list of triangles created by iteratively generating triangles that share
an edge with the previous triangle in the list.

Metrics. Mesh quality metrics quantify how well a triangulation
avoids poorly shaped elements that cause numerical instability.
Good elements have angles close to 60°, balanced edge lengths,

and near-equilateral proportions. In order to measure such proper-
ties, we rely on the following well-established metrics. We analyze
the angles of the generated triangles using the maximum, 0, and
minimum angle, 8,,,, [Rupert 1995; Shewchuk 1999] as well as the
equiangle skew [Pébay et al. 2007; Stimpson et al. 2007], which
measures the deviation from an equilateral triangle:

05 = max((6m — 60)/120, (60 — 6,,)/60) € [0,1]

Additionally, we use the ratio between the largest and shortest edge,
L, = €y /6m, [Sorgente et al. 2023].

Results. Fig. 9 presents the results of this experiment. While all
approximation methods provide a similar triangle quality, analytic
methods generate triangle meshes with lower quality according to
all metrics. Among the different tessellation approaches, centroid
provides a slight improvement over fany and strip at the cost of
additional triangles, with strip providing the meshes with the lowest
quality. Fig. 11 presents qualitative results of the different tessella-
tion methods in comparison to the original extracted polygons.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

222:10 « Christian Stippel, Felix Mujkanovic, Thomas Leimkiihler, and Pedro Hermosilla

Fig. 11. Different approaches of tessellating the reconstructed polygons compared to the simplified mesh containing 10 % of the original number of triangles.

Signed Distance Function

Sin approx.

Region Visualization

s

Fig. 12. SDF (left) encoded using a neural architecture with positional en-
coding. We use piece-wise linear surrogates for the sinusoids (center) in our
reconstruction (right). Green polygons represent the linear regions contain-
ing the zero-level set.

5.5 Post-processing

The output meshes from analytic methods are usually composed
of many small triangles, which arise from the optimization process.
However, many of these small triangles provide little information
about the underlying shape. Therefore, in this section, we post-
process the resulting meshes from our analytic extraction method
with a simplification algorithm based on Quadric Error Metrics
(QEM) [Garland and Heckbert 1997]. Fig. 10 presents the resulting
SP and SR for meshes containing different percentages of the orig-
inal number of triangles. While reducing the number of triangles
increases the error of our meshes, those remain smaller than the
error produced by all approximation methods, even when we reduce
the number of triangles to 10 % of the original mesh. Moreover, when
we analyze the triangle quality metrics of the simplified meshes, we
observe that reducing the number of triangles increases the quality
of the triangle mesh, reducing the gap between analytic and approx-
imation methods. Lastly, Fig. 11 presents some qualitative results
of the simplified mesh compared to different tessellation methods,
where we observe that the simplified mesh preserves the original
shape while drastically reducing the number of small triangles.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

5.6 Range Analysis Filtering

Filtering of linear regions using range analysis is a crucial step of
our algorithm. In this section, we evaluate the gains introduced
by this step by comparing our marching neurons algorithm to a
version of our method where the filtering step is deactivated. We
run both algorithms on SDFs encoded by both of our architectures,
d4_w128, and d4_w256. Unfortunately, for the d4_w256 architecture,
the version without filtering was not able to finish in a window time
of two hours for a single mesh due to the exponential grow of
the number of linear regions. For the d4_w128 architecture, the
filtering step lead to an average speed up of x12.2, highlighting the
importance of this step.

5.7 Extension to Other Activations

Our method was designed for neural network architectures with
ReLU activation functions, but it can easily generalize to piecewise-
linear activations such as leaky ReLU by storing slope and intercept
instead of a binary mask. Recent implicit neural representations rely
on continuous activation functions such as sine and cosine [Sitz-
mann et al. 2020; Tancik et al. 2020] to better capture high-frequency
details of the surface. In order to use our method with these archi-
tectures, such activation functions should be approximated with
piecewise-linear surrogates.

To evaluate the viability of such an approach, we train a small
ReLU network with two layers and four neurons each to approxi-
mate the SDF of a circle in 2D. In this architecture, we process the
input coordinates with a positional encoding layer with two frequen-
cies [Mildenhall et al. 2020] During reconstruction, we approximate
all periodic functions of the positional encoding layer using a piece-
wise linear function composed using 6 knots per period, see Fig. 12
right. Fig. 12 also presents the result of such experiment, where
our method is able to reconstruct the underlying SDF via the piece-
wise linear approximations. Unfortunately, our method introduces
certain errors in the reconstruction. The magnitude of this error is

defined by the number of linear segments used in the approxima-
tion, visible as the square pattern of the linear regions in Fig. 12.
However, this error can be reduced by increasing the number of
linear segments of the piece-wise linear surrogate.

6 Limitations

Our method is not exempt from limitations. Notably, we rely on
range analysis [Duff 1992; Rump and Kashiwagi 2015] to reduce
the number of linear cells processed. If the bounds yielded by this
analysis are too conservative, or the SDF encodes a complex shape
with little empty space, our method needs to retain a lot of cells,
leading to increased memory usage and long reconstruction time.

7 Conclusion

We have introduced a novel method for analytic surface extraction
from neural implicit shapes that achieves unprecedented accuracy.
This was achieved through a natively parallel algorithm design that
combines recursive polygon splitting with range analysis to filter
empty regions. Our meshes accurately capture the full detail en-
coded in the neural implicit function by departing from the common
practice of treating neural networks as black boxes.

These properties open up promising avenues for future work. Our
recursive subdivision scheme is likely to be well-suited for level-of-
detail generation, offering greater flexibility for subsequent process-
ing steps that require lower-resolution meshes. Finally, embedding
our mesh extractor into an end-to-end differentiable pipeline would
enable optimizing a neural SDF with mesh-based supervision, thus
unlocking the potential of our approach on a wide range of tasks.

Acknowledgments

This work was partially funded by the Austrian Research Promotion
Agency (FFG) under the project “AUTARK - Energy-Aware AMR
Safety” (No. 999922723), within the call “Key Technologies for the
Future - National 2024”. We gratefully acknowledge Wolfgang Koch
for the insightful and valuable research discussions.

Marching Neurons « 222:11

References

Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. 2019. Real-time rendering. AK
Peters/crc Press.

Sergei Azernikov and Anath Fischer. 2005. Anisotropic meshing of implicit surfaces. In
International Conference on Shape Modeling and Applications. 94-103.

Arturs Berzins. 2023. Polyhedral Complex Extraction from ReLU Networks using Edge
Subdivision. In International Conference on Machine Learning (ICML).

Jules Bloomenthal. 1988. Polygonization of implicit surfaces. Computer Aided Geometric
Design 5, 4 (1988), 341-355.

Jules Bloomenthal, Brian Wyvill, Geoff Wyvill, Alan H. Barr, and Alyn P. Rockwood.
1997. Introduction to Implicit Surfaces.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. 2014. FAUST:
Dataset and evaluation for 3D mesh registration. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon
mesh processing. CRC press.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang. 2018. JAX: Composable transformations of Python+ NumPy
programs. (2018).

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. ShapeNet:
An Information-Rich 3D Model Repository. arXiv preprint arXiv:1512.03012 (2015).

Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao Zhang. 2022. Neural
dual contouring. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1-13.

Zhiqin Chen and Hao Zhang. 2021. Neural marching cubes. ACM Transactions on
Graphics (TOG) 40, 6 (2021), 1-15.

Evgeni Chernyaev. 1995. Marching cubes 33: Construction of topologically correct isosur-
faces. Technical Report.

Julian Chibane, Aymen Mir, and Gerard Pons-Moll. 2020. Neural Unsigned Distance
Fields for Implicit Function Learning. In Advances in Neural Information Processing
Systems (NeurIPS).

Joao L. D. Comba and J. Stolfi. 1993. Affine arithmetic and its applications to computer
graphics. SIBGRAPI'93 (1993).

Brian Curless and Marc Levoy. 1996. A volumetric method for building complex models
from range images. In Conference on Computer Graphics and Interactive Techniques.
303-312.

Bruno Rodrigues De Araujo, Daniel S Lopes, Pauline Jepp, Joaquim A Jorge, and Brian
Wyvill. 2015. A survey on implicit surface polygonization. ACM Computing Surveys
(CSUR) 47, 4 (2015), 1-39.

Mark De Berg. 2000. Computational geometry: algorithms and applications. Springer
Science & Business Media.

Akio Doi and Akio Koide. 1991. An efficient method of triangulating equi-valued
surfaces by using tetrahedral cells. IEICE Transactions on Information and Systems
74,1 (1991), 214-224.

Tom Duff. 1992. Interval arithmetic recursive subdivision for implicit functions and
constructive solid geometry. ACM SIGGRAPH Computer Graphics 26, 2 (1992),
131-138.

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric Error
Metrics.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.
http://www.deeplearningbook.org.

J Elisenda Grigsby and Kathryn Lindsey. 2022. On transversality of bent hyperplane
arrangements and the topological expressiveness of ReLU neural networks. SIAM
Journal on Applied Algebra and Geometry 6, 2 (2022), 216-242.

Boris Hanin and David Rolnick. 2019. Deep relu networks have surprisingly few
activation patterns. Advances in Neural Information Processing Systems (NeurIPS) 32
(2019).

Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh: a
self-prior for deformable meshes. ACM Transactions on Graphics (TOG) 39, 4 (2020),
126-1.

Hans-Christian Hege, Martin Seebass, Detlev Stalling, and Malte Zockler. 1997. A
generalized marching cubes algorithm based on non-binary classifications. (1997).

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. 2019. Why relu net-
works yield high-confidence predictions far away from the training data and how
to mitigate the problem. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 41-50.

Adrian Hilton, Andrew J Stoddart, John Illingworth, and Terry Windeatt. 1996. Marching
triangles: range image fusion for complex object modelling. In IEEE International
Conference on Image Processing (ICIP), Vol. 2. 381-384.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward
networks are universal approximators. Neural networks 2, 5 (1989), 359-366.

Ahmed Imtiaz Humayun, Randall Balestriero, Guha Balakrishnan, and Richard G.
Baraniuk. 2023. SplineCam: Exact Visualization and Characterization of Deep
Network Geometry and Decision Boundaries. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 3789-3798.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

http://www.deeplearningbook.org

222:12 « Christian Stippel, Felix Mujkanovic, Thomas Leimkiihler, and Pedro Hermosilla

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of hermite
data. In Conference on Computer Graphics and Interactive Techniques. 339-346.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In International Conference on Learning Representations (ICLR).

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A
Big CAD Model Dataset For Geometric Deep Learning. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

M. Kohlbrenner and M. Alexa. 2025. Isosurface Extraction for Signed Distance Functions
using Power Diagrams. Computer Graphics Forum (2025).

Vladimir Kunc and Jifi Kléma. 2024. Three Decades of Activations: A Comprehen-
sive Survey of 400 Activation Functions for Neural Networks. arXiv preprint
arXiv:2402.09092 (2024).

Jiabao Lei and Kui Jia. 2020. Analytic Marching: An Analytic Meshing Solution from
Deep Implicit Surface Networks. In International Conference on Machine Learning
(ICML).

Jiabao Lei, Kui Jia, and Yi Ma. 2021. Learning and Meshing from Deep Implicit Surface
Networks Using an Efficient Implementation of Analytic Marching. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI) (2021), 1-1.

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution 3D
surface construction algorithm. ACM SIGGRAPH Computer Graphics 21, 4 (1987),
163-169.

Zoé Marschner, Silvia Sellan, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023. Constructive
solid geometry on neural signed distance fields. In SIGGRAPH Asia. 1-12.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In European Conference on Computer Vision (ECCV).

Claudio Montani, Riccardo Scateni, and Roberto Scopigno. 1994. Discretized marching
cubes. In Proceedings Visualization. 281-287.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. 2014. On the
number of linear regions of deep neural networks. Advances in Neural Information
Processing Systems (NeurIPS) 27 (2014).

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. 2020. Topology of deep neural
networks. Journal of Machine Learning Research 21, 184 (2020), 1-40.

Timothy S. Newman and Hong Yi. 2006. A survey of the marching cubes algorithm.
Computers & Graphics 30, 5 (2006), 854-879.

Gregory M Nielson. 2004. Dual marching cubes. In Visualization. 489-496.

Stanley Osher, Ronald Fedkiw, and K Piechor. 2004. Level set methods and dynamic
implicit surfaces. Appl. Mech. Rev. 57, 3 (2004), B15-B15.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning continuous signed distance functions for shape
representation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 165-174.

Razvan Pascanu, Guido Montufar, and Yoshua Bengio. 2014. On the number of infer-
ence regions of deep feed forward networks with piece-wise linear activations. In
International Conference on Learning Representations (ICLR).

Philippe P Pébay, David Thompson, Jason Shepherd, Patrick Knupp, Curtis Lisle, Vin-
cent A Magnotta, and Nicole M Grosland. 2007. New applications of the verdict
library for standardized mesh verification pre, post, and end-to-end processing. In
International Meshing Roundtable. 535-552.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein.
2017. On the expressive power of deep neural networks. In International Conference
on Machine Learning (ICML). 2847-2854.

Daxuan Ren, Hezi Shi, Jianmin Zheng, and Jianfei Cai. 2025. McGrids: Monte Carlo-
Driven Adaptive Grids for Iso-Surface Extraction. In European Conference on Com-
puter Vision (ECCV). Springer, 127-144.

Siegfried M Rump and Masahide Kashiwagi. 2015. Implementation and improvements
of affine arithmetic. Nonlinear Theory and Its Applications, IEICE 6, 3 (2015), 341-359.

Jim Rupert. 1995. A Delaunay refinement algorithm for quality 2D-mesh generation.
Journal of Algorithms 18, 3 (1995), 548-585.

Silvia Sellan, Christopher Batty, and Oded Stein. 2023. Reach For the Spheres: Tangency-
aware surface reconstruction of SDFs. In SIGGRAPH Asia.

Silvia Sellan, Yingying Ren, Christopher Batty, and Oded Stein. 2024. Reach For the
Arcs: Reconstructing Surfaces from SDFs via Tangent Points. In SSGGRAPH. Article
25.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. 2018. Bounding
and counting linear regions of deep neural networks. In International Conference on
Machine Learning (ICML). 4558-4566.

Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz. 2019. Non-
linear sphere tracing for rendering deformed signed distance fields. ACM Transac-
tions on Graphics (TOG) 38, 6 (2019).

Nicholas Sharp and Alec Jacobson. 2022. Spelunking the deep: Guaranteed queries on
general neural implicit surfaces via range analysis. ACM Transactions on Graphics
(TOG) 41, 4 (2022), 1-16.

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng
Chen, Zan Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. 2023. Flexible Isosurface

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

Extraction for Gradient-Based Mesh Optimization. ACM Transactions on Graphics
(TOG) 42, 4 (2023).

Jonathan Richard Shewchuk. 1999. Lecture notes on Delaunay mesh generation. (1999).

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation
Functions. In Advances in Neural Information Processing Systems (NeurIPS).

Vincent Sitzmann, Michael Zollhéfer, and Gordon Wetzstein. 2019. Scene representation
networks: Continuous 3d-structure-aware neural scene representations. Advances
in Neural Information Processing Systems (NeurIPS) 32 (2019).

Tommaso Sorgente, Silvia Biasotti, Gianmarco Manzini, and Michela Spagnuolo. 2023.
A survey of indicators for mesh quality assessment. In Computer Graphics Forum,
Vol. 42. 461-483.

Barton T Stander and John C Hart. 1997. Guaranteeing the topology of an implicit
surface polygonization for interactive modeling. In Conference on Computer Graphics
and Interactive Techniques. 279-286.

CJ Stimpson, CD Ernst, David C Thompson, Patrick Michael Knupp, and Philippe Pierre
Pébay. 2007. The verdict geometric quality library. Number 1751. Sandia National
Laboratories.

Ivan E Sutherland and Gary W Hodgman. 1974. Reentrant polygon clipping. Commun.
ACM 17, 1 (1974), 32-42.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. 2020. Fourier
features let networks learn high frequency functions in low dimensional domains.
Advances in Neural Information Processing Systems (NeurIPS) 33 (2020), 7537-7547.

Jonatan Vallin, Karl Larsson, and Mats G Larson. 2023. The geometric structure of
fully-connected relu-layers. arXiv preprint arXiv:2310.03482 (2023).

Kees Van Overveld and Brian Wyvill. 2004. Shrinkwrap: An efficient adaptive algorithm
for triangulating an iso-surface. The Visual Computer 20 (2004), 362-379.

Joseph A. Vincent and Mac Schwager. 2021. Reachable Polyhedral Marching (RPM):
A Safety Verification Algorithm for Robotic Systems with Deep Neural Network
Components. In International Conference on Robotics and Automation (ICRA). 9029~
9035.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. Advances in Neural Information Processing Systems
(NeurlIPS) (2021).

Yuan Wang. 2022. Estimation and Comparison of Linear Regions for ReLU Networks.
In International Joint Conferences on Artificial Intelligence (IJCAI). 3544-3550.

Alan H Watt. 1999. 3D Computer Graphics. Addison-Wesley Longman Publishing Co.,
Inc.

Jane Wilhelms and Allen Van Gelder. 1992. Octrees for faster isosurface generation.
ACM Transactions on Graphics (TOG) 11, 3 (1992), 201-227.

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. 1986. Data structure for soft objects.
The Visual Computer 2 (1986), 227-234.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.
Neural fields in visual computing and beyond. In Computer Graphics Forum, Vol. 41.
641-676.

Qingnan Zhou and Alec Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. 2018. Open3D: A Modern Library for
3D Data Processing. arXiv:1801.09847 (2018).

	Abstract
	1 Introduction
	2 Related Work
	2.1 The Geometry of Neural Networks
	2.2 Iso-Surface Extraction

	3 Background
	4 Method
	4.1 Level Set Extraction for 2D Networks
	4.2 Extension to 3D
	4.3 Implementation Details

	5 Evaluation
	5.1 Experimental Setup
	5.2 Main Results
	5.3 Scalability
	5.4 Triangle Mesh Quality
	5.5 Post-processing
	5.6 Range Analysis Filtering
	5.7 Extension to Other Activations

	6 Limitations
	7 Conclusion
	Acknowledgments
	References

