
Marching Neurons:
Accurate Surface Extraction for Neural Implicit Shapes
CHRISTIAN STIPPEL, TU Wien, Austria
FELIX MUJKANOVIC,Max-Planck-Institute for Informatics, Germany
THOMAS LEIMKÜHLER,Max-Planck-Institute for Informatics, Germany
PEDRO HERMOSILLA, TU Wien, Austria

1283 5123

Marching Cubes Marching Cubes Marching Neurons

Fig. 1. Surfaces extracted from a signed distance function (SDF) represented by a neural network using Marching Cubes with different grid resolutions (left
and center) compared to our analytic method (right). While Marching Cubes struggles to reconstruct sharp edges even at high grid resolutions, our analytic
method is able to reconstruct the surface accurately.

Accurate surface geometry representation is crucial in 3D visual computing.

Explicit representations, such as polygonal meshes, and implicit representa-

tions, like signed distance functions, each have distinct advantages, making

efficient conversions between them increasingly important. Conventional

surface extraction methods for implicit representations, such as the widely

used Marching Cubes algorithm, rely on spatial decomposition and sampling,

leading to inaccuracies due to fixed and limited resolution. We introduce

a novel approach for analytically extracting surfaces from neural implicit

functions. Our method operates natively in parallel and can navigate large

neural architectures. By leveraging the fact that each neuron partitions the

domain, we develop a depth-first traversal strategy to efficiently track the

encoded surface. The resulting meshes faithfully capture the full geometric

information from the network without ad-hoc spatial discretization, achiev-

ing unprecedented accuracy across diverse shapes and network architectures

while maintaining competitive speed.

ACM Reference Format:
Christian Stippel, Felix Mujkanovic, Thomas Leimkühler, and Pedro Her-

mosilla. 2025. Marching Neurons: Accurate Surface Extraction for Neural

Implicit Shapes. ACM Trans. Graph. 44, 6, Article 222 (December 2025),

12 pages. https://doi.org/10.1145/3763328

Authors’ Contact Information: Christian Stippel, TU Wien, Austria; Felix Mujkanovic,

Max-Planck-Institute for Informatics, Germany; Thomas Leimkühler, Max-Planck-

Institute for Informatics, Germany; Pedro Hermosilla, TU Wien, Austria.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-

national License.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7368/2025/12-ART222

https://doi.org/10.1145/3763328

1 Introduction
Accurately representing surface geometry is a cornerstone of 3D

visual computing and beyond [De Berg 2000; Watt 1999]. A contin-

ually growing repertoire of representations exists, broadly divided

into two categories: Explicit representations, which directly describe
the surface using geometric elements such as polygons or points;

and implicit representations, which define the surface indirectly

as the set of points satisfying a mathematical equation, such as

level sets, with signed distance functions (SDFs) being a prominent

example. The choice of representation is typically guided by the

downstream algorithms and applications that use the geometry. For

example, explicit representations are well-suited for classical tasks

such as rendering [Akenine-Moller et al. 2019] and editing [Botsch

et al. 2010], while implicit representations excel in gradient-based

geometry optimization, a core operation in modern neural work-

flows [Park et al. 2019; Wang et al. 2021]. In this work, we propose

a novel, accurate, and flexible technique for analytically converting

a neural implicit shape into an explicit surface.

The vast majority of existing techniques for surface extraction

from implicit representations rely on spatial decomposition and

sampling [De Araújo et al. 2015]. The most commonly used method

in this domain is Marching Cubes [Lorensen and Cline 1987], which

samples the implicit function on a regular grid and uses linear in-

terpolation to approximate the desired level set. While popular

for its simplicity and agnostic to the implicit function represen-

tation, this method’s accuracy is limited by the chosen sampling

resolution and interpolation scheme. Many follow-up works have

further developed the basic approach [Newman and Yi 2006], e.g.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

HTTPS://ORCID.ORG/0000-0003-0482-902X
HTTPS://ORCID.ORG/0009-0009-9122-4408
HTTPS://ORCID.ORG/0009-0006-7784-7957
HTTPS://ORCID.ORG/0000-0003-3586-4741
https://doi.org/10.1145/3763328
https://orcid.org/0000-0003-0482-902X
https://orcid.org/0009-0009-9122-4408
https://orcid.org/0009-0006-7784-7957
https://orcid.org/0000-0003-3586-4741
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3763328


222:2 • Christian Stippel, Felix Mujkanovic, Thomas Leimkühler, and Pedro Hermosilla

by pruning samples using hierarchical structures [Wilhelms and

Van Gelder 1992], moving to tetrahedral meshes to enable irregu-

lar sample placement [Doi and Koide 1991], optimizing the sample

locations [Shen et al. 2023], or employing more advanced interpo-

lation strategies [Ju et al. 2002; Sellán et al. 2024]. Yet, for all of

these approaches, a fundamental problem remains: Reconstructing

complex geometry from a finite set of samples inevitably introduces

inaccuracies.

The surge of deep learning [Goodfellow et al. 2016] over the

past decade has advanced not only signal processing but also signal

representation. In particular, neural fields [Sitzmann et al. 2019;

Xie et al. 2022], which use coordinate-based networks for signal

representation, have become a powerful and ubiquitous paradigm

for continuous functions, such as surface implicits [Park et al. 2019].

The key insight of this work is that these neural representations

enable efficient analytic surface extraction without the need for ad-

hoc sampling.

We propose a novel method for extracting a surface from an im-

plicit function represented by a neural network. We leverage the

fact that a (deep) composition of piecewise linear functions remains

piecewise linear, with each layer subdividing existing regions [Mont-

ufar et al. 2014] and shaping the target function through convex

linear regions separated by hyperplanes. This enables us to traverse

the deep network neuron by neuron (“marching”) in a depth-first

fashion, identifying progressively finer regions that contain the

desired surface. Although the number of linear regions increases

exponentially with network depth [Montufar et al. 2014], most do

not contain the surface. Using range analysis [Sharp and Jacobson

2022] to eliminate empty regions, our approach efficiently traverses

ReLU-based neural architectures. This process produces a polygonal

mesh that accurately captures the encoded surface geometry.

Unlike previous work on analytic surface extraction [Berzins 2023;

Lei and Jia 2020; Lei et al. 2021], our approach is not only adaptively

accurate – extracting surfaces at the level of the underlying neural

field – but also capable of extracting multiple disconnected shapes

while maintaining competitive reconstruction speed.

In summary, our contributions are:

• A novel method for analytically extracting a polygonal mesh

from an implicit neural representation.

• An algorithm that is natively parallel and easy to implement.

• Capabilities and accuracy that significantly exceed the current

state of the art.

We provide all source code and datasets in our project page.

2 Related Work

2.1 The Geometry of Neural Networks
Deep neural networks are universal function approximators in the-

ory [Hornik et al. 1989] and demonstrate the ability to represent

complex functions across diverse domains in practice [Goodfellow

et al. 2016]. This remarkable flexibility arises from their composi-

tional structure, which enables exponential expressivity with respect

to the number of layers [Montufar et al. 2014], allowing virtually

any data topology to be handled [Naitzat et al. 2020]. Networks with

ReLU activation functions are particularly well-suited for analyzing

this property [Hanin and Rolnick 2019; Pascanu et al. 2014; Raghu

et al. 2017], as they model continuous piecewise linear functions.

These networks partition the input domain into polyhedral regions,

formed by an arrangement of folded hyperplanes that correspond

to the decision boundaries of neurons [Grigsby and Lindsey 2022;

Vallin et al. 2023]. We propose a novel algorithm for tracing the

geometry of a neural network to extract an explicit representation

from the implicit function it encodes.

Algorithms for analytically extracting the polyhedral complex

of a ReLU network typically rely on mixed-integer linear program-

ming [Serra et al. 2018], neuron state flipping [Lei and Jia 2020;

Lei et al. 2021], or recursive intersection and cutting [Humayun

et al. 2023; Wang 2022], with applications in, e.g. , safety verifi-

cation [Vincent and Schwager 2021] and robustness [Hein et al.

2019]. However, the computational complexity of these approaches

is typically substantial due to the combinatorial explosion in the

number of polyhedra. Addressing this problem, Berzins [2023] pro-

poses increasing efficiency by eliminating redundancy through an

edge-centric approach. Our key insight is that, for the critical task of

surface extraction from neural implicit representations, a massively

parallel implementation can be achieved by a bespoke depth-first

traversal of the network. This approach results in accuracy that

surpasses the state of the art, while maintaining competitive speed.

2.2 Iso-Surface Extraction
The representation of surfaces as level sets of implicit functions has

a rich history across various scientific disciplines and decades [Bloo-

menthal et al. 1997; Osher et al. 2004]. Extracting an explicit (typi-

cally polygonal) surface from this representation is a well-studied

problem for which several classes of algorithms have been devel-

oped [De Araújo et al. 2015].

While surface tracking [Hilton et al. 1996] and shrink-wrapping

approaches [Hanocka et al. 2020; Stander andHart 1997; VanOverveld

and Wyvill 2004] have been applied with some success, the major-

ity of research focuses on spatial decomposition techniques [Bloo-

menthal 1988]. Here, space is divided into cells, and polygons are

constructed within each cell containing the surface, typically by

interpolating discrete samples. The popular Marching Cubes algo-

rithm [Lorensen and Cline 1987; Wyvill et al. 1986] and numerous

follow-up works [Chernyaev 1995; Hege et al. 1997; Montani et al.

1994; Newman and Yi 2006; Wilhelms and Van Gelder 1992] use a

regular grid of cubes. The rigidity of this structure has been relaxed

to allow for more adaptive discretizations, e.g. by using tetrahe-

dra [Doi and Koide 1991; Ren et al. 2025]. Unlike the sampling-based

techniques, our method determines the geometry analytically.

Dual representations have been shown to outperform traditional

approaches by offering more flexible and accurate surface recon-

struction, especially in handling sharp features and complex topolo-

gies [Azernikov and Fischer 2005; Ju et al. 2002; Nielson 2004].

Furthermore, replacing hand-crafted extraction rules with learned

ones [Chen et al. 2022; Chen and Zhang 2021] or adopting more

sophisticated interpolation schemes [Kohlbrenner and Alexa 2025;

Sellán et al. 2023; Sellán et al. 2024] can lead to significant qual-

ity improvements. By using an analytical approach, our algorithm

eliminates the need for any sampling and interpolation schemes.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

https://phermosilla.github.io/neurons/


Marching Neurons • 222:3

With the proliferation of neural fields [Sitzmann et al. 2019; Xie

et al. 2022], surface-encoding implicit functions are now commonly

represented using neural networks [Park et al. 2019]. Due to their

closed-form nature, analytic surface extraction is feasible; however,

the complexity of the underlying geometry presents significant

challenges. Analytic Marching [Lei and Jia 2020; Lei et al. 2021]

addresses this problem by explicitly enumerating the polyhedral

cells that contain the surface, recursively visiting neighboring cells.

However, this approach faces challenges with multiple disconnected

components. Berzins [2023] addresses this problem by relying on an

edge-centric approach instead of linear regions. However, Berzins

struggles with complex architectures due to the lack of a filtering

mechanism for empty regions, producing at the same time an exces-

sive number of polygons. In contrast, we propose a method capable

of extracting shapes that can consist of multiple components while

maintaining competitive speed.

3 Background
In this section, we introduce the concepts and notation for neural

implicit shape representations relevant to our approach.

We focus on solid shapes S represented as the level set, or iso

surface, of an implicit function 𝑓 ∈ Ω → R [Bloomenthal et al.

1997], with Ω ⊂ R3
. Without loss of generality, we consider the

zero level set (Fig. 2):

S := {x ∈ Ω | 𝑓 (x) = 0} . (1)

> 0 = 0< 0

Fig. 2. An implicit func-
tion and its zero level set.

This general setting encompasses sev-

eral widely used special cases, includ-

ing signed distance fields (SDFs) [Os-

her et al. 2004; Park et al. 2019], un-

signed distance fields [Chibane et al.

2020], and their variations, such as

truncated [Curless and Levoy 1996],

distorted [Seyb et al. 2019], or other-

wise weaker forms [Marschner et al.

2023; Sharp and Jacobson 2022].

Nowadays, a widely adopted ap-

proach to representing 𝑓 is through

a neural field 𝑓𝜃 , i.e. a neural architec-

ture with trainable parameters 𝜃 , optimized via gradient descent [Xie

et al. 2022]. In the simplest case, 𝑓𝜃 is represented by aMultilayer Per-

ceptron (MLP). The number of neurons in each layer 𝑙 ∈ {1, . . . , 𝐿} is
denoted as 𝑑𝑙 . Given a weight matrix𝑊 (𝑙 ) ∈ R𝑑𝑙 ×𝑑𝑙−1 , a bias vector
b(𝑙 ) ∈ R𝑑𝑙 , and a non-linear activation function 𝜎 (𝑙 ) ∈ R → R for

each layer, the network recursively applies

p(𝑙 ) =𝑊 (𝑙 )q(𝑙−1) + b(𝑙 ) , q(𝑙 ) = 𝜎 (𝑙 )
(
p(𝑙 )

)
, (2)

where 𝜎 is applied element-wise. We set q(0) := x and 𝑓𝜃 (x) := p(𝐿)

and refer to p(𝑙 )
𝑖

and q(𝑙 )
𝑖

as the 𝑖-th pre-activation neuron and post-
activation neuron, respectively.
While there is an overwhelming variety of nonlinear activation

functions available [Kunc and Kléma 2024], we consider the special

case of piecewise linear1 activation functions for now. Given the

recursive structure of Eq. 2, 𝑓𝜃 is a composition of piecewise linear

1
For simplicity, we use “linear” for both linear and affine functions.

functions and is therefore itself piecewise linear. Each call of 𝜎

potentially subdivides the domain of 𝑓𝜃 into an increasingly larger

number of convex linear regions, separated by planes [Hanin and

Rolnick 2019; Montufar et al. 2014], with each region referred to as

a cell. Fig. 3 illustrates this property in 2D using arguably the most

common choice in this space: the rectified linear unit (ReLU):

𝜎 (p) =max(0, p) . (3)

In this context, we refer to a post-activation neuron q(𝑙 )
𝑖

as active if
it is positive and inactive if it is zero. The cells of 𝑓𝜃 are separated by

the set of planes

{
x ∈ R3 | p(𝑙 )

𝑖
(x) = 0

}
, which correspond to the

locations where a neuron switches from inactive to active. Within

each cell, the active/inactive pattern of neurons in the entire network

remains fixed, implying that 𝑓𝜃 is linear within each cell and can be

represented by collapsing the corresponding submatrices of𝑊 (𝑙 )

and subvectors of b(𝑙 ) across layers. Similar observations hold for

any choice of 𝜎 that is piecewise linear.

4 Method
Given an implicit neural representation 𝑓𝜃 with ReLU activation

functions, we aim to extract its zero level set S as a polygonal

mesh. Importantly, our goal is an analytic extraction that captures

all the details encoded in 𝑓𝜃 , unlike the widely used sampling-based

methods [Lorensen and Cline 1987].

For piecewise-linear activation functions, 𝑓𝜃 can be viewed as

a collection of linear branches [Lei and Jia 2020; Lei et al. 2021].

Our key insight is that by adaptively subdividing the domain and

tracking activation patterns, we can efficiently reduce the network

to an explicit piecewise-linear function in each cell, represented

as a polyhedral mesh. Using range analysis [Sharp and Jacobson

2022], we can discard many cells early on, as they do not contain

the zero level set, leading to significant efficiency gains. As a result,

we obtain an accurate solution for the zero iso-surface in the form

of a polygonal mesh.

In Sec. 4.1, we introduce the basic structure of our approach using

a 2D domain, before extending the method to the 3D setting in

Sec. 4.2. Finally, we provide implementation details in Sec. 4.3.

4.1 Level Set Extraction for 2D Networks
For Ω ⊂ R2

, each neuron can define a polyline that partitions Ω
into two regions, resulting in a collection of convex polygonal cells

(Fig. 3). We propose a novel scheme that explicitly tracks these cells

by a depth-first traversal of 𝑓𝜃 . As we traverse 𝑓𝜃 , the cells, with layer-

specific geometries and internal states, undergo transformations

and splitting, and may also be discarded. The goal of this process is

to identify the set of cells containing the zero level set of 𝑓𝜃 , enabling

its explicit representation as one or more closed line strips to be

extracted.

Each polygonal cell at layer 𝑙 is represented as the tuple

C (𝑙 ) =
{
𝑉 ;𝑊, b̃

}
, (4)

where 𝑉 = [v1, v2, . . . , v𝑚] ∈ R2×𝑚
specifies the 2D coordinates of

the𝑚 vertices v𝑗 ∈ R2
forming the polygon. Further,𝑊 ∈ R𝑑𝑙 ×2

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.



222:4 • Christian Stippel, Felix Mujkanovic, Thomas Leimkühler, and Pedro Hermosilla

Linear Cell Zero Cell ReLU

Fig. 3. The geometry of ReLU MLPs, illustrated here for a 2D input domain with two hidden layers containing two neurons each. In each layer 𝑙 , the
pre-activations p(𝑙 ) are computed as linear combinations of the neurons from the previous layer. The ReLU activation then produces post-activations q(𝑙 ) ,
introducing lines that subdivide the existing linear regions. As a result, the network’s output is composed of convex cells within which it remains linear, i.e. we
can collapse all corresponding weight matrices and biases.

Cell Pruning1. Cell Splitting2. Layer Collapsing

Merge

3.

Fig. 4. The three steps of our network traversal. First, we bound the network
response within each cell (purple volume) to eliminate those that do not
intersect the zero level set. Next, we split the remaining cell to capture the
nonlinearities introduced by piecewise linear activation functions. Finally,
the current layer (green neurons) is combined with the next layer. The entire
process (1. - 3.) repeats until the final network layer is reached.

and b̃ ∈ R𝑑𝑙 are the parameters defining the linear function

p̃(x) =𝑊 x + b̃ (5)

inside the polygon by combining the linear functions contributing

up to this layer, corresponding to the pre-activation response of the

current layer. For any hidden layer 𝑙 , p̃(x) produces a𝑑𝑙 -dimensional

vector, where each component corresponds to a neuron (rows in

Fig. 3). In the final layer 𝐿, p̃(x) outputs a scalar (𝑑𝐿 = 1) that

represents the linear function describing the full 𝑓𝜃 within the cell.

Without loss of generality, we assume a rectangular domain Ω

and initialize the cell set with a single quadrilateral,

{
C (0)
1

}
, covering

the entire domain. The corresponding function p̃(x) is initialized as

the identity function, with𝑊 = I2×2 and b̃ = 0.
From this point, we traverse the layers of 𝑓𝜃 , iteratively updating

the cell set until only the final-layer cells containing the zero level

set remain. Progressing through layers, we prune or split cells while

updating their parameters, as detailed below and shown in Fig. 4.

4.1.1 Step 1: Cell Pruning. As a first step, we eliminate cells that

do not intersect the zero level set of 𝑓𝜃 . Since the number of lin-

ear regions within the domain Ω grows exponentially with each

layer [Montufar et al. 2014], and most do not contain the zero level

set, this step is crucial for maintaining efficiency. We use range

analysis [Duff 1992; Rump and Kashiwagi 2015] on the remaining

layers to accomplish this task. Specifically, we follow Sharp and

Jacobson [2022] and compute affine bounds [Comba and Stolfi 1993]

of 𝑓𝜃 within each cell C (𝑙 )
𝑖

. This gives us a conservative estimate of

the minimum and maximum values of 𝑓𝜃 within C (𝑙 )
𝑖

. If

min

x∈C (𝑙 )
𝑖

𝑓𝜃 (x) > 0 or max

x∈C (𝑙 )
𝑖

𝑓𝜃 (x) < 0, (6)

we discard C (𝑙 )
𝑖

because it does not intersect the zero level set. In

practice, we query the affine bounds using the cell’s axis-aligned

bounding box. This may overestimate ranges for degenerated cells,

for example, ones that have a long, not axis-aligned diagonal; how-

ever, it suffices to ensure scalability to larger networks.

4.1.2 Step 2: Cell Splitting. In this step, we first identify neurons

in the current layer 𝑙 that divide the polygon C (𝑙 )
𝑖

into two smaller

linear regions. We refer to these neurons as critical and observe

that their pre-activation responses p̃(x) change sign within the

polygon, leading to the non-linear kink of the subsequent ReLU

activation occurring inside the polygon. Since we are dealing with

linear functions, the vertices v𝑗 naturally correspond to the locations
of the extrema of p̃(x) within the polygon. Therefore, to check for

criticality, it suffices to evaluate p̃ at the vertices. Specifically, neuron
𝑖 is considered critical if

min

𝑗

(̃
p(v𝑗 )

)
𝑖
< 0 and max

𝑗

(̃
p(v𝑗 )

)
𝑖
> 0. (7)

If one or more critical neurons are associated with the polygon, it

is split along the (linear) zero level set of the corresponding output

dimensions of p̃(x) with the Sutherland-Hodgman [1974] algorithm.

New vertices are inserted on the intersection of polygon edges with

the cutting plane, obtaining two sub-polygons separated by the neu-

ron. Polygons that do not need to be split are retained unchanged.

4.1.3 Step 3: Layer Collapsing. As we move to the next layer 𝑙 + 1,

it is necessary to update𝑊 and b̃. Recall that only neurons active

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.



Marching Neurons • 222:5

within a cell contribute their linear functions to it. To track this, we

define a binary mask m ∈ R𝑑𝑙 , where each entry indicates whether

the corresponding neuron in the current layer 𝑙 is active within the

cell. Using this mask, we update the function parameters of the cell

as follows:

𝑊 :=𝑊 (𝑙+1)
diag(m)𝑊

b̃ :=𝑊 (𝑙+1)
(
m ⊙ b̃

)
+ b(𝑙+1) ,

(8)

where diag(·) converts a vector into its diagonal matrix representa-

tion, and ⊙ denotes the Hadamard product. The updated cells form

the new set

{
C (𝑙+1)
𝑖

}
, which will be processed by step 1 again.

4.1.4 Network Traversal. The three steps outlined above specify

how cells should be updated when transitioning from one layer

to the next, providing flexibility in choosing the global traversal

scheme. A straightforward approach processes all cells in a layer

before moving to the next, corresponding to a breadth-first traversal.

However, this approach has the disadvantage of requiring more

memory than is typically available on a contemporary GPU. In

the worst case, every neuron splits all active cells. A breadth-first

traversal must then hold the full frontier of all cells at once, resulting

in space requirements of 𝑂 (2𝑑 ), where 𝑑 is the number of neurons.

Therefore, we choose a depth-first traversal where we process cells

in a last-in-first-out principle to reduce the memory burden. To fully

utilize the GPU, we schedule the traversal to maintain a sufficient

number of cells processed in parallel in each step. In this case, we

only store the current branches of the subdivision tree, resulting in

𝑂 (𝑏𝑑), where 𝑏 is the number of cells processed in parallel.

In practice, the average space complexity is lower: not every

neuron splits every cell, and the likelihood of a split decreases the

more often a cell has already been subdivided. Additionally, range-

analysis pruning removes many cells before they would be split.

4.1.5 Level Set Extraction. Once all cells have reached the final

layer, the set

{
C (𝐿)
𝑖

}
contains the cells that cover the piecewise

linear regions of the level set of 𝑓𝜃 . At this point, the linear level

set S = {x | p̃(x) = 0} can be analytically extracted from each cell.

This is straightforward as p̃ is a linear function. The union of the

extracted per-cell level sets forms the desired explicit representation

as a line strip.

4.2 Extension to 3D
Extending our approach to 3D, where x ∈ Ω ⊂ R3

, is straightfor-

ward: operations on polygons are adapted to handle 3D polyhedra.
Specifically, we now maintain𝑚 3D vertices, 𝑉 ∈ R3×𝑚, and the

per-cell function parameter𝑊 ∈ R𝑑𝑙 ×3 accounts for the additional
dimension. Critical neurons now split polyhedra along planes. Once
the final layer 𝐿 of 𝑓𝜃 is reached, we analytically extract the zero

level set from each polyhedron, producing the polygonal mesh that

explicitly represents the encoded surface S. The mesh is then tes-

sellated into triangles for compatibility with standard pipelines.

4.3 Implementation Details
We realized our approach using a reasonably optimized JAX [Brad-

bury et al. 2018] implementation that takes advantage of our na-

tively parallel algorithm design. All active cells reside in a shared

buffer with indexing stacks for each operation. To prevent numerical

inaccuracies that can occasionally arise from our deep recursive

subdivision scheme, we found a mixed-precision implementation to

be essential. Specifically, while cell pruning can be safely executed

with 32-bit floating-point precision, we use 64-bit precision for cell

splitting and layer collapsing. However, this does not impose any

restrictions on the bit depth of the input network 𝑓𝜃 .

5 Evaluation
In this section, we describe the experiments conducted to evaluate

our method. We compare the quality of the meshes extracted by our

algorithm with those reconstructed by other methods. Moreover, we

alsomeasure the time required for the reconstruction of the resulting

meshes and the average number of triangles generated. Additionally,

we also evaluate the quality of the meshes generated and the effect

of mesh simplification algorithms on the reconstruction. Lastly, we

evaluate the effect of our filtering step and extend our approach to

arbitrary activation functions. We assume that all shapes are defined

by the zero-level set of an SDF encoded by a neural network.

5.1 Experimental Setup
Metrics. To measure the error introduced by the reconstruction

algorithms, we compare the extracted mesh directly to the SDF en-

coded within the neural network. We define two metrics to measure

such error: Soft-Precision (SP) and Soft-Recall (SR). Soft-Precision

aims to quantify how far the reconstructed mesh is from the zero-

level set defined by the SDF. This metric is computed by sampling

2
20
points on the surface of the reconstructed mesh, evaluating the

SDF at these point locations, and taking the mean absolute value.

If the reconstructed surface lies in the zero-level set of the SDF,

Soft-Precision will be exactly zero.

However, Soft-Precision does not capture cases in which large

portions of the zero-level set are not reconstructed. To remedy this,

we introduce a secondmetric, Soft-Recall. First, we sample 2
20
points

on the surface of the original mesh from our dataset. Then, we use

gradient descent to move such points to the zero-level set of the SDF.

Once converged, we measure the average distance of the resulting

coordinates to the reconstructed mesh. If the method is able to

perfectly reconstruct the complete zero-level set, Soft-Recall will be

exactly zero.

Additionally, we compare the time required to perform the ex-

traction and the number of resulting triangles.

Datasets. We evaluate our method and all other baselines on 84

watertight shapes collected from five different datasets: 20 shapes

from Thingi10K [Zhou and Jacobson 2016], 20 shapes from the ABC

Dataset [Koch et al. 2019], 19 shapes from ShapeNet [Chang et al.

2015], 20 shapes from FAUST [Bogo et al. 2014], and 5 shapes from

the Stanford 3D Scanning Repository [Curless and Levoy 1996].

Fig. 5 depicts some samples from our dataset. Then, for each shape,

we fit neural SDFs with all architectures.

SDF Training Protocol. Before training, meshes are converted into

an SDF. Each mesh’s bounding box is normalized to the range

[−.95, .95]3, and then densely sampled to produce 10
7
training points

per shape. For non-ShapeNet meshes, 2
20
samples (≈ 6% of the total)

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.



222:6 • Christian Stippel, Felix Mujkanovic, Thomas Leimkühler, and Pedro Hermosilla

Table 1. Mesh extraction. Soft Precision (SP) and Soft Recall (SR) are multiplied by 10
6, triangles divided by 10

3. Runtime is measured in seconds.

d4_w128 d4_w256

SP SR Runtime Triangles SP SR Runtime Triangles

Approx. - 643

•Marching Cubes 1682.28 10293.05 0.01 14.44 1802.69 9832.66 0.01 14.21

•Dual Contouring 1278.87 10044.56 0.20 14.45 1412.82 9530.62 0.20 14.23

•Hier. Marching Cubes 1686.56 10352.45 4.77 14.42 1814.43 9982.32 5.72 14.18

•Reach for the Arcs 4072.33 3144.99 538.65 355.01 3480.32 2851.51 481.15 349.09

Approx. - 1283

•Marching Cubes 518.48 1373.29 0.04 62.18 551.65 1248.17 0.08 60.89

•Dual Contouring 425.45 1319.47 1.17 62.13 461.12 1207.23 1.22 60.90

•Hier. Marching Cubes 543.82 1420.48 8.83 62.11 561.32 1269.78 11.69 60.76

•Reach for the Arcs 6302.02 2810.83 5726.60 310.95 4826.59 2406.64 4696.52 337.86

Approx. - 2563

•Marching Cubes 162.36 356.69 0.30 258.50 175.50 330.28 0.62 252.57

•Dual Contouring 126.58 327.90 6.92 258.38 134.16 301.52 7.07 252.47

•Hier. Marching Cubes 221.47 436.62 11.35 259.51 196.49 363.15 16.81 252.52

•Reach for the Arcs – – – – – – – –

Approx. - 5123

•Marching Cubes 53.61 113.88 2.36 1048.80 60.33 101.94 4.91 1025.29

•Dual Contouring 41.75 101.98 48.56 1048.69 45.24 88.62 50.33 1025.15

•Hier. Marching Cubes 150.22 235.37 15.05 1060.95 103.01 153.12 21.54 1028.08

•Reach for the Arcs – – – – – – – –

Exact
•Analytic Marching 0.03 675.76 3.21 425.92 0.02 188.80 32.99 2306.06

•Edge Subdivision 0.03 0.61 46.72 429.08 0.02 0.90 21147.39 2321.70

•Ours 0.03 0.07 11.84 429.08 0.02 0.03 169.40 2321.70

Fig. 5. Visualization of samples from our dataset. Our dataset covers a large
range of mesh complexities, from simple CAD objects composed of a few
thousand triangles to highly detailed shapes with millions of triangles.

are drawn uniformly from the bounding box using a Sobol sequence,

while the remaining points (≈ 94%) are concentrated near the sur-

face. These are split equally into on-surface points and near-surface

points (each ≈ 47% of the total). The near-surface samples are cre-

ated by adding Gaussian noise with 𝜎 = 0.05 to surface points.

Signed distances are computed for the uniform and near-surface

samples using Open3D’s raycasting [Zhou et al. 2018] with 9 eval-

uation rays per query, while the on-surface samples are assigned

distance zero. For ShapeNet meshes, which are often non-watertight,

DeepSDF’s dedicated preprocessing tool [Park et al. 2019] is used to

generate the same total number of samples distributed across inside

and outside regions. Networks are trained with the Adam [Kingma

and Ba 2015] optimizer at a fixed learning rate of 10
−4

and a batch

size of 10
4
. Batches are sampled with replacement from the full

dataset. Training runs for four hours.

Baselines. We compare our method to several baselines that ap-

proximate the mesh surface by spatial decomposition and sampling

of the SDF, and other exact methods like ours. In particular, we select

Marching Cubes [Lorensen and Cline 1987], Dual Contouring [Ju

et al. 2002], Hierarchical Marching Cubes [Sharp and Jacobson 2022],

and Reach for the Arcs [Sellán et al. 2024] as representative base-

lines for approximation methods. For such methods, we use a grid

resolution of 64, 128, 256 and 512. Moreover, we compare to two

existing exact methods: Analytic Marching [Lei et al. 2021] and Edge

Subdivision [Berzins 2023].

Neural Architectures. We chose a neural architecture commonly

used to encode SDFs: a ReLU multi-layer perceptron (MLP). In par-

ticular, we selected two variants: a ReLU MLP with four layers and

128 neurons each (d4_w128), and a more complex architecture also

composed of four layers but with 256 neurons each (d4_w256).

5.2 Main Results
Tab. 1 presents the main result of our comparison. Naturally, all

approximation methods produce meshes with high SP and SR when

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.



Marching Neurons • 222:7

SP SR Runtime

10 8

10 7

10 6

10 5

10 4

10 3

10 2

SP
 / 

SR

d4_w128
SP SR Runtime

d4_w256

100

101

102

103

104

Ru
nt

im
e

Marching Cubes Dual Contouring Hier. Marching Cubes Reach for the Arcs Analytic Marching Edge Subdivision Ours

Fig. 6. Box plots for soft precision (SP), soft recall (SR), and runtime per architecture and method. Little triangles indicate the means. Runtime is measured in
seconds. Most approximation methods use a grid of resolution 512, while Reach for the Arcs uses 128.

3 4 5 6 7 8
Layers

10 1

100

101

102

103

104

Ru
nt

im
e

32 64 128 256 512
Neurons

Marching Cubes Dual Contouring Hier. Marching Cubes Reach for the Arcs Analytic Marching Edge Subdivision Ours

Fig. 7. Scalability study with runtime measured in seconds. We vary the depth and width of the d4_w128 architecture and extract meshes with every method.

low-resolution sampling grids are used. Employing higher-resolution

grids decreases these metrics, but leads to an increase in processing

time and generated triangles. Yet, even for the finest grids with

resolution 512, the reconstructed meshes significantly deviate from

the SDF. Moreover, the recent method Reach for the Arcs [Sellán

et al. 2024] is only able to process low-resolution grids due to its

long processing times.

Analytic methods, on the other hand, producemeshes with almost

perfect SP. Regarding SR, however, Analytic Marching [Lei et al.

2021] exhibits high metrics as it misses disconnected parts of the

mesh. This is the result of the nature of their algorithm, which relies

on a set of seed points from which the mesh is reconstructed itera-

tively. In contrast, this is not the case for Edge Subdivision [Berzins

2023], which produces meshes with low SR. Unfortunately, it takes

a long time to reconstruct large networks. When we look at the

distribution of these metrics over the different shapes in our dataset

in Fig. 6, analytic methods present high variability in SR, indicating

that they struggle with certain shapes. Our method, on the other

hand, produces more accurate meshes with fewer triangles than

other analytic methods, while maintaining a reasonable runtime

comparable to approximation methods.

Fig. 8 provides qualitative results of several meshes reconstructed

by all baselines. These show that our method is able to produce

more accurate results than approximation methods, which struggle

to reconstruct sharp edges, and than Analytic Marching [Lei and Jia

2020; Lei et al. 2021], which fails to reconstruct certain disconnected

components. Additionally, Fig. 8 also shows that reconstructions pro-

duced by Edge Subdivision [Berzins 2023] result in denser meshes

with more triangles.

5.3 Scalability
We also evaluate how the runtime of each method scales for net-

work architectures with increasing numbers of layers and neurons

in Fig. 7. For most approximation methods, the runtime slightly

increases with both the depth and width of the network, since in-

ference becomes more costly. For Reach for the Arcs [Sellán et al.

2024], this effect is drowned by the method’s generally long run-

time. As expected, analytic methods exhibit a steeper increase in

runtime as we increase the network size. Among them, Edge Sub-

division [Berzins 2023] is particularly sensitive to the number of

neurons, and fails to process a network with width 512. On the other

hand, both Analytic Marching [Lei and Jia 2020; Lei et al. 2021] and

our method scale more gracefully with the number of neurons, while

ours unfortunately scales worse with the number of layers. Still,

these results show that our method is able to process a large range

of network architectures in a reasonable runtime similar to Analytic

Marching [Lei and Jia 2020; Lei et al. 2021] while being substantially

more accurate.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.



222:8 • Christian Stippel, Felix Mujkanovic, Thomas Leimkühler, and Pedro Hermosilla

A
M

Ed
ge

O
ur

s
d4_w128 d4_w256

A
pp

ro
x.

 - 
51

23
A

na
ly

tic

M
C

D
C

H
ie

r. 
M

C

A
pp

ro
x.

 - 
12

83

M
C

D
C

H
ie

r. 
M

C
R-

A
rc

s

Fig. 8. Qualitative results of all the baselines for two network architectures with different numbers of neurons.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.



Marching Neurons • 222:9

15

20

25

30

35

40

45
Min Angle

90

100

110

120

Max Angle

0.3

0.4

0.5

0.6

0.7

0.8
Equiangle Skew

5

10

15

20

25

30
Edge Ratio

Marching Cubes Dual Contouring Hier. Marching Cubes Reach for the Arcs Ours (Centroid) Ours (Fan0) Ours (Strip)

Fig. 9. Evaluation of the quality of the triangle meshes generated by different reconstruction methods using the d4_w256 architecture.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percentage of triangles

10 1

100

101

102

SP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percentage of triangles

10 1

100

101

102

SR

0.4

0.5

0.6

Eq
ui

an
gl

e 
Sk

ew

2

4

6

Ed
ge

 R
at

io

Ours (QEM) Marching Cubes Dual Contouring Hier. Marching Cubes

Fig. 10. Soft precision (SP), soft recall (SR), and triangle quality metrics of our meshes after reducing the number of triangles usingQuadric Error Metrics
(QEM). Additionally, for reference, we include results from several approximation methods without any post-processing. Note that Marching Cubes and Hier.
Marching Cubes overlap on some of the triangle quality metrics.

5.4 Triangle MeshQuality
All analytic extractors output polygonal faces that we tessellate

to triangles for downstream use. In the following experiments, we

evaluate the quality of the triangle meshes generated by analytic

methods with different tessellation approaches compared to approx-

imation methods. We report standard triangle-quality metrics.

Tessellation. Several strategies were considered for tessellating

the 𝑘-gon faces produced by the analytic extractor. The fan0 method

connects every triangle to the first vertex 𝑖0, yielding the triangle set

{(𝑖0, 𝑖 𝑗 , 𝑖 𝑗+1) |1 ≤ 𝑗 ≤ 𝑘 − 2}. However, it often generates long trian-

gles. Centroid introduces the vertex 𝑐 = 1

𝑘

∑𝑘
𝑗=1 𝑣𝑖 𝑗 as an additional

vertex. Triangles {(𝑐, 𝑖 𝑗 , 𝑖 𝑗+1) |0 ≤ 𝑗 ≤ 𝑘 − 2} are emitted cyclically,

producing a uniform hub structure, though additional triangles are

needed. Lastly, strip generates a triangle strip from the polygon, i.e.

list of triangles created by iteratively generating triangles that share

an edge with the previous triangle in the list.

Metrics. Mesh quality metrics quantify how well a triangulation

avoids poorly shaped elements that cause numerical instability.

Good elements have angles close to 60
◦
, balanced edge lengths,

and near-equilateral proportions. In order to measure such proper-

ties, we rely on the following well-established metrics. We analyze

the angles of the generated triangles using the maximum, 𝜃𝑀 , and

minimum angle, 𝜃𝑚 , [Rupert 1995; Shewchuk 1999] as well as the

equiangle skew [Pébay et al. 2007; Stimpson et al. 2007], which

measures the deviation from an equilateral triangle:

𝜃𝑠 =max

(
(𝜃𝑀 − 60)/120, (60 − 𝜃𝑚)/60

)
∈ [0, 1]

Additionally, we use the ratio between the largest and shortest edge,

𝐿𝑟 = ℓ𝑀/ℓ𝑚 , [Sorgente et al. 2023].

Results. Fig. 9 presents the results of this experiment. While all

approximation methods provide a similar triangle quality, analytic

methods generate triangle meshes with lower quality according to

all metrics. Among the different tessellation approaches, centroid
provides a slight improvement over fan0 and strip at the cost of

additional triangles, with strip providing the meshes with the lowest

quality. Fig. 11 presents qualitative results of the different tessella-

tion methods in comparison to the original extracted polygons.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.



222:10 • Christian Stippel, Felix Mujkanovic, Thomas Leimkühler, and Pedro Hermosilla

Output Polygons Strip Centroid QEMFan0

Fig. 11. Different approaches of tessellating the reconstructed polygons compared to the simplified mesh containing 10 % of the original number of triangles.

Signed Distance Function Sin approx.

c1

�c

�

c2

c3

c4

c5

c6

Region Visualization

Fig. 12. SDF (left) encoded using a neural architecture with positional en-
coding. We use piece-wise linear surrogates for the sinusoids (center) in our
reconstruction (right). Green polygons represent the linear regions contain-
ing the zero-level set.

5.5 Post-processing
The output meshes from analytic methods are usually composed

of many small triangles, which arise from the optimization process.

However, many of these small triangles provide little information

about the underlying shape. Therefore, in this section, we post-

process the resulting meshes from our analytic extraction method

with a simplification algorithm based on Quadric Error Metrics

(QEM) [Garland and Heckbert 1997]. Fig. 10 presents the resulting

SP and SR for meshes containing different percentages of the orig-

inal number of triangles. While reducing the number of triangles

increases the error of our meshes, those remain smaller than the

error produced by all approximation methods, even when we reduce

the number of triangles to 10 % of the original mesh. Moreover, when

we analyze the triangle quality metrics of the simplified meshes, we

observe that reducing the number of triangles increases the quality

of the triangle mesh, reducing the gap between analytic and approx-

imation methods. Lastly, Fig. 11 presents some qualitative results

of the simplified mesh compared to different tessellation methods,

where we observe that the simplified mesh preserves the original

shape while drastically reducing the number of small triangles.

5.6 Range Analysis Filtering
Filtering of linear regions using range analysis is a crucial step of

our algorithm. In this section, we evaluate the gains introduced

by this step by comparing our marching neurons algorithm to a

version of our method where the filtering step is deactivated. We

run both algorithms on SDFs encoded by both of our architectures,

d4_w128, and d4_w256. Unfortunately, for the d4_w256 architecture,

the version without filtering was not able to finish in a window time

of two hours for a single mesh due to the exponential grow of

the number of linear regions. For the d4_w128 architecture, the

filtering step lead to an average speed up of ×12.2, highlighting the

importance of this step.

5.7 Extension to Other Activations
Our method was designed for neural network architectures with

ReLU activation functions, but it can easily generalize to piecewise-

linear activations such as leaky ReLU by storing slope and intercept

instead of a binary mask. Recent implicit neural representations rely

on continuous activation functions such as sine and cosine [Sitz-

mann et al. 2020; Tancik et al. 2020] to better capture high-frequency

details of the surface. In order to use our method with these archi-

tectures, such activation functions should be approximated with

piecewise-linear surrogates.

To evaluate the viability of such an approach, we train a small

ReLU network with two layers and four neurons each to approxi-

mate the SDF of a circle in 2D. In this architecture, we process the

input coordinates with a positional encoding layer with two frequen-

cies [Mildenhall et al. 2020] During reconstruction, we approximate

all periodic functions of the positional encoding layer using a piece-

wise linear function composed using 6 knots per period, see Fig. 12

right. Fig. 12 also presents the result of such experiment, where

our method is able to reconstruct the underlying SDF via the piece-

wise linear approximations. Unfortunately, our method introduces

certain errors in the reconstruction. The magnitude of this error is

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.



Marching Neurons • 222:11

defined by the number of linear segments used in the approxima-

tion, visible as the square pattern of the linear regions in Fig. 12.

However, this error can be reduced by increasing the number of

linear segments of the piece-wise linear surrogate.

6 Limitations
Our method is not exempt from limitations. Notably, we rely on

range analysis [Duff 1992; Rump and Kashiwagi 2015] to reduce

the number of linear cells processed. If the bounds yielded by this

analysis are too conservative, or the SDF encodes a complex shape

with little empty space, our method needs to retain a lot of cells,

leading to increased memory usage and long reconstruction time.

7 Conclusion
We have introduced a novel method for analytic surface extraction

from neural implicit shapes that achieves unprecedented accuracy.

This was achieved through a natively parallel algorithm design that

combines recursive polygon splitting with range analysis to filter

empty regions. Our meshes accurately capture the full detail en-

coded in the neural implicit function by departing from the common

practice of treating neural networks as black boxes.

These properties open up promising avenues for future work. Our

recursive subdivision scheme is likely to be well-suited for level-of-

detail generation, offering greater flexibility for subsequent process-

ing steps that require lower-resolution meshes. Finally, embedding

our mesh extractor into an end-to-end differentiable pipeline would

enable optimizing a neural SDF with mesh-based supervision, thus

unlocking the potential of our approach on a wide range of tasks.

Acknowledgments
This work was partially funded by the Austrian Research Promotion

Agency (FFG) under the project “AUTARK – Energy-Aware AMR

Safety” (No. 999922723), within the call “Key Technologies for the

Future – National 2024”. We gratefully acknowledge Wolfgang Koch

for the insightful and valuable research discussions.

References
Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. 2019. Real-time rendering. AK

Peters/crc Press.

Sergei Azernikov and Anath Fischer. 2005. Anisotropic meshing of implicit surfaces. In

International Conference on Shape Modeling and Applications. 94–103.
Arturs Berzins. 2023. Polyhedral Complex Extraction from ReLU Networks using Edge

Subdivision. In International Conference on Machine Learning (ICML).
Jules Bloomenthal. 1988. Polygonization of implicit surfaces. Computer Aided Geometric

Design 5, 4 (1988), 341–355.

Jules Bloomenthal, Brian Wyvill, Geoff Wyvill, Alan H. Barr, and Alyn P. Rockwood.

1997. Introduction to Implicit Surfaces.
Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. 2014. FAUST:

Dataset and evaluation for 3D mesh registration. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon
mesh processing. CRC press.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,

Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, SkyeWanderman-

Milne, and Qiao Zhang. 2018. JAX: Composable transformations of Python+ NumPy

programs. (2018).

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. ShapeNet:

An Information-Rich 3D Model Repository. arXiv preprint arXiv:1512.03012 (2015).
Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao Zhang. 2022. Neural

dual contouring. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–13.
Zhiqin Chen and Hao Zhang. 2021. Neural marching cubes. ACM Transactions on

Graphics (TOG) 40, 6 (2021), 1–15.
Evgeni Chernyaev. 1995. Marching cubes 33: Construction of topologically correct isosur-

faces. Technical Report.
Julian Chibane, Aymen Mir, and Gerard Pons-Moll. 2020. Neural Unsigned Distance

Fields for Implicit Function Learning. In Advances in Neural Information Processing
Systems (NeurIPS).

Joao L. D. Comba and J. Stolfi. 1993. Affine arithmetic and its applications to computer

graphics. SIBGRAPI’93 (1993).
Brian Curless and Marc Levoy. 1996. A volumetric method for building complex models

from range images. In Conference on Computer Graphics and Interactive Techniques.
303–312.

Bruno Rodrigues De Araújo, Daniel S Lopes, Pauline Jepp, Joaquim A Jorge, and Brian

Wyvill. 2015. A survey on implicit surface polygonization. ACM Computing Surveys
(CSUR) 47, 4 (2015), 1–39.

Mark De Berg. 2000. Computational geometry: algorithms and applications. Springer
Science & Business Media.

Akio Doi and Akio Koide. 1991. An efficient method of triangulating equi-valued

surfaces by using tetrahedral cells. IEICE Transactions on Information and Systems
74, 1 (1991), 214–224.

Tom Duff. 1992. Interval arithmetic recursive subdivision for implicit functions and

constructive solid geometry. ACM SIGGRAPH Computer Graphics 26, 2 (1992),

131–138.

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric Error
Metrics.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

http://www.deeplearningbook.org.

J Elisenda Grigsby and Kathryn Lindsey. 2022. On transversality of bent hyperplane

arrangements and the topological expressiveness of ReLU neural networks. SIAM
Journal on Applied Algebra and Geometry 6, 2 (2022), 216–242.

Boris Hanin and David Rolnick. 2019. Deep relu networks have surprisingly few

activation patterns. Advances in Neural Information Processing Systems (NeurIPS) 32
(2019).

Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh: a

self-prior for deformable meshes. ACM Transactions on Graphics (TOG) 39, 4 (2020),
126–1.

Hans-Christian Hege, Martin Seebass, Detlev Stalling, and Malte Zöckler. 1997. A

generalized marching cubes algorithm based on non-binary classifications. (1997).

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. 2019. Why relu net-

works yield high-confidence predictions far away from the training data and how

to mitigate the problem. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 41–50.

AdrianHilton, Andrew J Stoddart, John Illingworth, and TerryWindeatt. 1996. Marching

triangles: range image fusion for complex object modelling. In IEEE International
Conference on Image Processing (ICIP), Vol. 2. 381–384.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward

networks are universal approximators. Neural networks 2, 5 (1989), 359–366.
Ahmed Imtiaz Humayun, Randall Balestriero, Guha Balakrishnan, and Richard G.

Baraniuk. 2023. SplineCam: Exact Visualization and Characterization of Deep

Network Geometry and Decision Boundaries. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 3789–3798.

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.

http://www.deeplearningbook.org


222:12 • Christian Stippel, Felix Mujkanovic, Thomas Leimkühler, and Pedro Hermosilla

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of hermite

data. In Conference on Computer Graphics and Interactive Techniques. 339–346.
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In International Conference on Learning Representations (ICLR).
Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,

Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A

Big CAD Model Dataset For Geometric Deep Learning. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

M. Kohlbrenner andM. Alexa. 2025. Isosurface Extraction for Signed Distance Functions

using Power Diagrams. Computer Graphics Forum (2025).

Vladimír Kunc and Jiří Kléma. 2024. Three Decades of Activations: A Comprehen-

sive Survey of 400 Activation Functions for Neural Networks. arXiv preprint
arXiv:2402.09092 (2024).

Jiabao Lei and Kui Jia. 2020. Analytic Marching: An Analytic Meshing Solution from

Deep Implicit Surface Networks. In International Conference on Machine Learning
(ICML).

Jiabao Lei, Kui Jia, and Yi Ma. 2021. Learning and Meshing from Deep Implicit Surface

Networks Using an Efficient Implementation of Analytic Marching. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI) (2021), 1–1.

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution 3D

surface construction algorithm. ACM SIGGRAPH Computer Graphics 21, 4 (1987),
163–169.

ZoëMarschner, Silvia Sellán, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023. Constructive

solid geometry on neural signed distance fields. In SIGGRAPH Asia. 1–12.
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. In European Conference on Computer Vision (ECCV).
Claudio Montani, Riccardo Scateni, and Roberto Scopigno. 1994. Discretized marching

cubes. In Proceedings Visualization. 281–287.
Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. 2014. On the

number of linear regions of deep neural networks. Advances in Neural Information
Processing Systems (NeurIPS) 27 (2014).

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. 2020. Topology of deep neural

networks. Journal of Machine Learning Research 21, 184 (2020), 1–40.

Timothy S. Newman and Hong Yi. 2006. A survey of the marching cubes algorithm.

Computers & Graphics 30, 5 (2006), 854–879.
Gregory M Nielson. 2004. Dual marching cubes. In Visualization. 489–496.
Stanley Osher, Ronald Fedkiw, and K Piechor. 2004. Level set methods and dynamic

implicit surfaces. Appl. Mech. Rev. 57, 3 (2004), B15–B15.
Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-

grove. 2019. DeepSDF: Learning continuous signed distance functions for shape

representation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 165–174.

Razvan Pascanu, Guido Montufar, and Yoshua Bengio. 2014. On the number of infer-

ence regions of deep feed forward networks with piece-wise linear activations. In

International Conference on Learning Representations (ICLR).
Philippe P Pébay, David Thompson, Jason Shepherd, Patrick Knupp, Curtis Lisle, Vin-

cent A Magnotta, and Nicole M Grosland. 2007. New applications of the verdict

library for standardized mesh verification pre, post, and end-to-end processing. In

International Meshing Roundtable. 535–552.
Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein.

2017. On the expressive power of deep neural networks. In International Conference
on Machine Learning (ICML). 2847–2854.

Daxuan Ren, Hezi Shi, Jianmin Zheng, and Jianfei Cai. 2025. McGrids: Monte Carlo-

Driven Adaptive Grids for Iso-Surface Extraction. In European Conference on Com-
puter Vision (ECCV). Springer, 127–144.

Siegfried M Rump and Masahide Kashiwagi. 2015. Implementation and improvements

of affine arithmetic. Nonlinear Theory and Its Applications, IEICE 6, 3 (2015), 341–359.

Jim Rupert. 1995. A Delaunay refinement algorithm for quality 2D-mesh generation.

Journal of Algorithms 18, 3 (1995), 548–585.
Silvia Sellán, Christopher Batty, and Oded Stein. 2023. Reach For the Spheres: Tangency-

aware surface reconstruction of SDFs. In SIGGRAPH Asia.
Silvia Sellán, Yingying Ren, Christopher Batty, and Oded Stein. 2024. Reach For the

Arcs: Reconstructing Surfaces from SDFs via Tangent Points. In SIGGRAPH. Article
25.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. 2018. Bounding

and counting linear regions of deep neural networks. In International Conference on
Machine Learning (ICML). 4558–4566.

Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz. 2019. Non-

linear sphere tracing for rendering deformed signed distance fields. ACM Transac-
tions on Graphics (TOG) 38, 6 (2019).

Nicholas Sharp and Alec Jacobson. 2022. Spelunking the deep: Guaranteed queries on

general neural implicit surfaces via range analysis. ACM Transactions on Graphics
(TOG) 41, 4 (2022), 1–16.

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, ZianWang, Wenzheng

Chen, Zan Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. 2023. Flexible Isosurface

Extraction for Gradient-Based Mesh Optimization. ACM Transactions on Graphics
(TOG) 42, 4 (2023).

Jonathan Richard Shewchuk. 1999. Lecture notes on Delaunay mesh generation. (1999).

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and

Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation

Functions. In Advances in Neural Information Processing Systems (NeurIPS).
Vincent Sitzmann, Michael Zollhöfer, and GordonWetzstein. 2019. Scene representation

networks: Continuous 3d-structure-aware neural scene representations. Advances
in Neural Information Processing Systems (NeurIPS) 32 (2019).

Tommaso Sorgente, Silvia Biasotti, Gianmarco Manzini, and Michela Spagnuolo. 2023.

A survey of indicators for mesh quality assessment. In Computer Graphics Forum,

Vol. 42. 461–483.

Barton T Stander and John C Hart. 1997. Guaranteeing the topology of an implicit

surface polygonization for interactive modeling. In Conference on Computer Graphics
and Interactive Techniques. 279–286.

CJ Stimpson, CD Ernst, David C Thompson, Patrick Michael Knupp, and Philippe Pierre

Pébay. 2007. The verdict geometric quality library. Number 1751. Sandia National

Laboratories.

Ivan E Sutherland and Gary W Hodgman. 1974. Reentrant polygon clipping. Commun.
ACM 17, 1 (1974), 32–42.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-

van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and RenNg. 2020. Fourier

features let networks learn high frequency functions in low dimensional domains.

Advances in Neural Information Processing Systems (NeurIPS) 33 (2020), 7537–7547.
Jonatan Vallin, Karl Larsson, and Mats G Larson. 2023. The geometric structure of

fully-connected relu-layers. arXiv preprint arXiv:2310.03482 (2023).
Kees Van Overveld and BrianWyvill. 2004. Shrinkwrap: An efficient adaptive algorithm

for triangulating an iso-surface. The Visual Computer 20 (2004), 362–379.
Joseph A. Vincent and Mac Schwager. 2021. Reachable Polyhedral Marching (RPM):

A Safety Verification Algorithm for Robotic Systems with Deep Neural Network

Components. In International Conference on Robotics and Automation (ICRA). 9029–
9035.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping

Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for

Multi-view Reconstruction. Advances in Neural Information Processing Systems
(NeurIPS) (2021).

Yuan Wang. 2022. Estimation and Comparison of Linear Regions for ReLU Networks.

In International Joint Conferences on Artificial Intelligence (IJCAI). 3544–3550.
Alan H Watt. 1999. 3D Computer Graphics. Addison-Wesley Longman Publishing Co.,

Inc.

Jane Wilhelms and Allen Van Gelder. 1992. Octrees for faster isosurface generation.

ACM Transactions on Graphics (TOG) 11, 3 (1992), 201–227.
Geoff Wyvill, Craig McPheeters, and Brian Wyvill. 1986. Data structure for soft objects.

The Visual Computer 2 (1986), 227–234.
Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.

Neural fields in visual computing and beyond. In Computer Graphics Forum, Vol. 41.

641–676.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. 2018. Open3D: A Modern Library for

3D Data Processing. arXiv:1801.09847 (2018).

ACM Trans. Graph., Vol. 44, No. 6, Article 222. Publication date: December 2025.


	Abstract
	1 Introduction
	2 Related Work
	2.1 The Geometry of Neural Networks
	2.2 Iso-Surface Extraction

	3 Background
	4 Method
	4.1 Level Set Extraction for 2D Networks
	4.2 Extension to 3D
	4.3 Implementation Details

	5 Evaluation
	5.1 Experimental Setup
	5.2 Main Results
	5.3 Scalability
	5.4 Triangle Mesh Quality
	5.5 Post-processing
	5.6 Range Analysis Filtering
	5.7 Extension to Other Activations

	6 Limitations
	7 Conclusion
	Acknowledgments
	References

